Introduction to Convolutional Neural Networks

November 17th 2020 KMI-2020

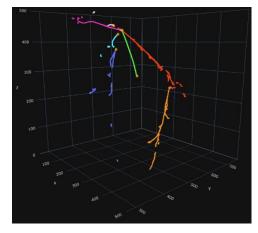
Nagoya University

Kazuhiro Terao SLAC National Lab

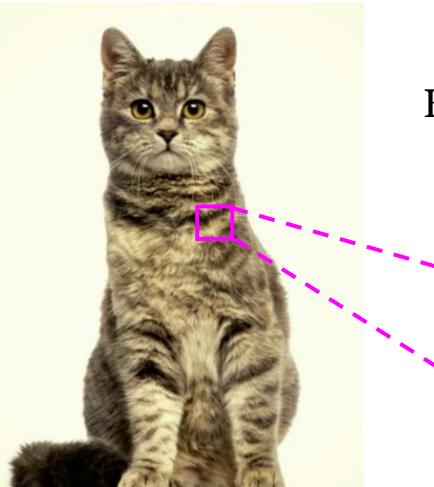
Image Analysis In Computer Vision

ENERGY

Office of Science



How to write an algorithm to identify a cat?



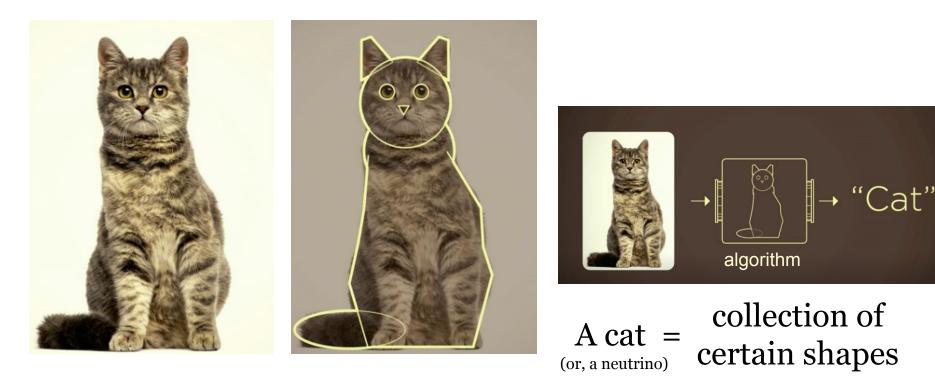
How to write an algorithm to identify a cat?

... very hard task ...

16	08	67	15	83	09
37	52	77	23	22	74
35	42	48	72	85	27
68					
		10			
18	55	38	73	50	47

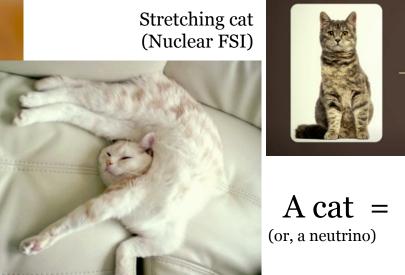
Development Workflow for non-ML algorithms

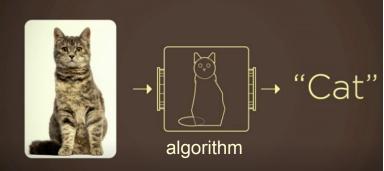
1. Write an algorithm based on some principles



- 1. Write an algorithm based on some principles
- 2. Run on data samples
- 3. Observe failure cases, implement fixes/heuristics
- Iterate over 2 & 3 till a satisfactory level is achieved
- Chain multiple algorithms as one algorithm, repeat 2, 3, and 4. 5.

Partial cat (escaping the detector)





collection of certain shapes

Development Workflow for non-ML algorithms

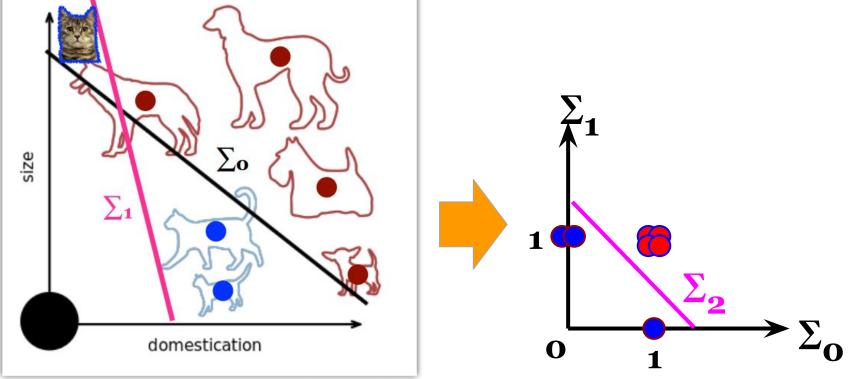
- 1. Write an algorithm based on some principles
- 2. Run on data samples
- 3. Observe failure cases, implement fixes/heuristics
- 4. Iterate over 2 & 3 till a satisfactory level is achieved
- 5. Chain multiple algorithms as one algorithm, repeat 2, 3, and 4.

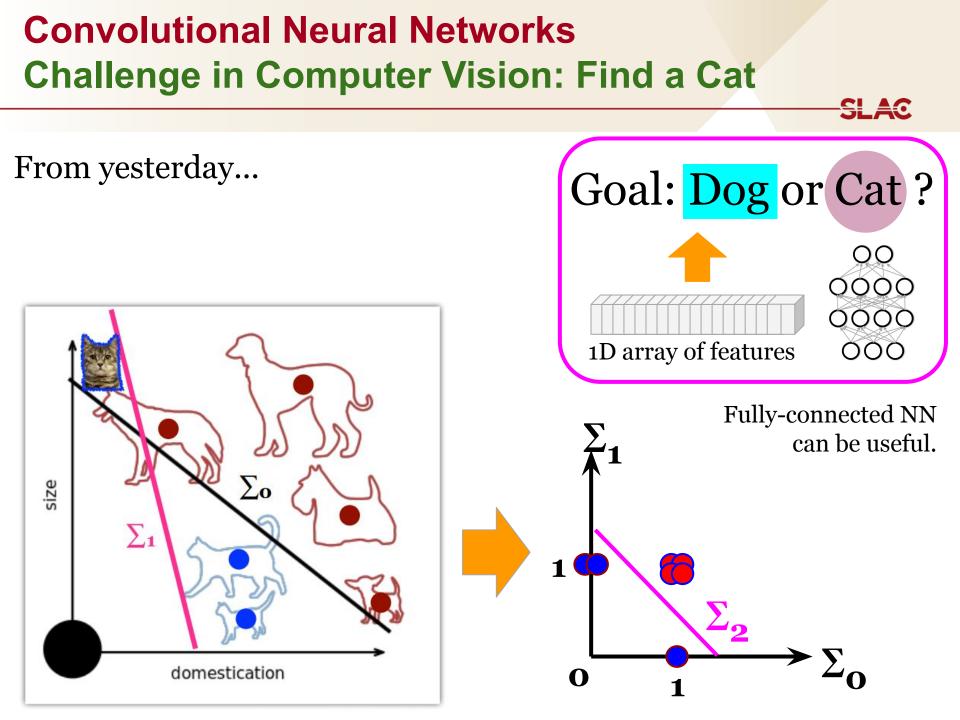
Machine Learning

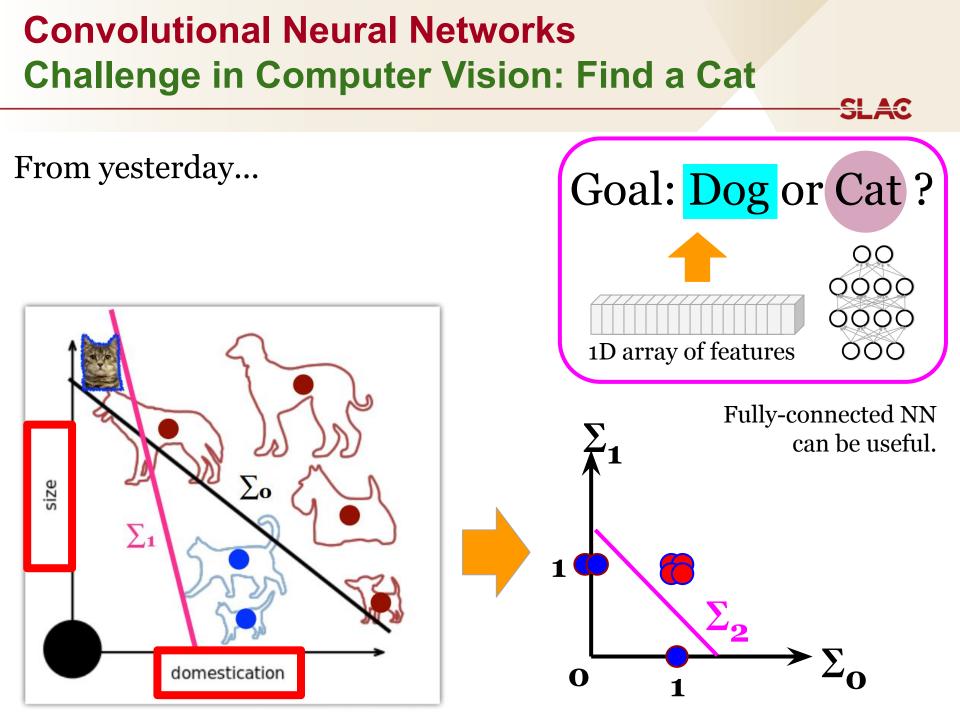
- "Learn patterns from data"
 - automation of steps 2, 3, and 4"
- "Chain algorithms & optimize"
 - step 5 addressed by design
- "Deep Neural Network"
 - de-facto solutio in computer vision

Image Analysis Using Neural Networks

Convolutional Neural Networks Challenge in Computer Vision: Find a Cat SLAC Output From yesterday... x_o cat \sum_{2} dog x_1

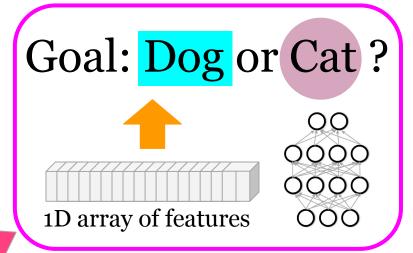






HOW?

For today!

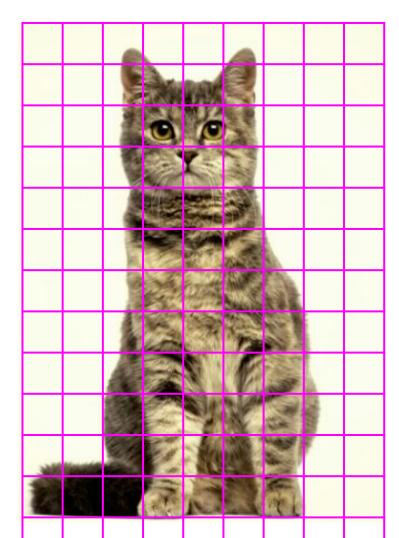


Fully-connected NN can be useful.

SLAC

How can we extract "features" from image? Fully-connected NN?

How about flattened image + MLP?

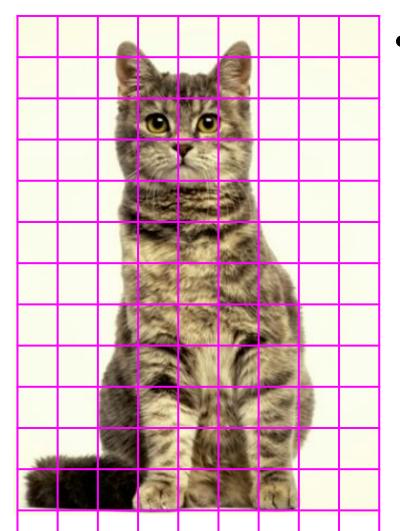




How about flattened image + MLP?

SLAC

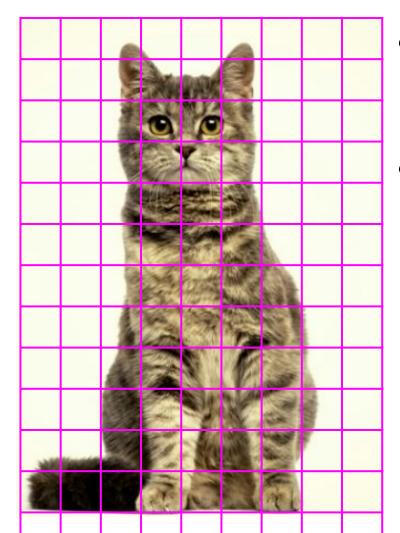
• For an input image of 100x100 pixels RGB image, how many weights does 1 neuron carry?



How about flattened image + MLP?

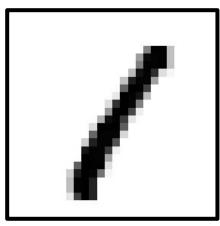
SLAC

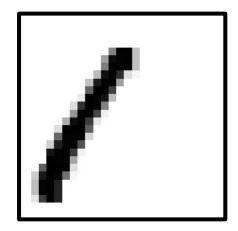
• For an input image of 100x100 pixels RGB image, how many weights does 1 neuron carry? **30,000 for just 1 neuron!**

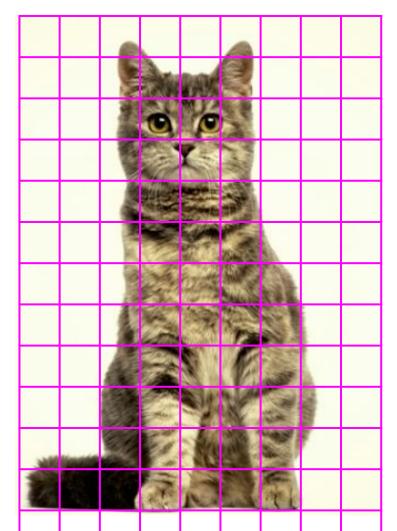


How about flattened image + MLP?

- For an input image of 100x100 pixels RGB image, how many weights does 1 neuron carry? **30,000 for just 1 neuron!**
- Two image of the same cat, but in a different position w.r.t. the frame. Would neuron react the same?



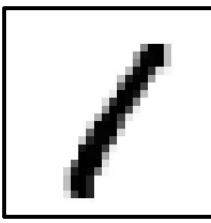


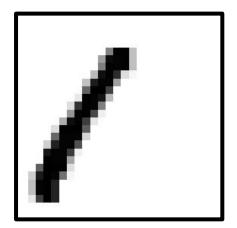


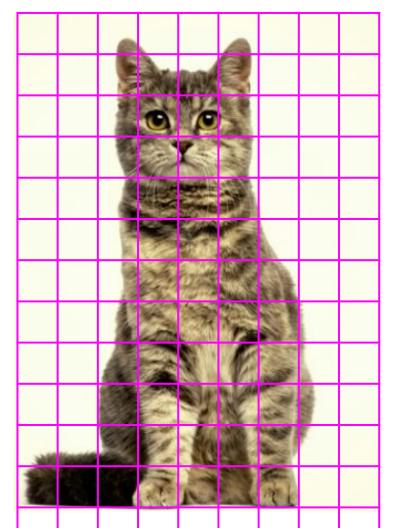
How about flattened image + MLP?

- For an input image of 100x100 pixels RGB image, how many weights does 1 neuron carry? **30,000 for just 1 neuron!**
- Two image of the same cat, but in a different position w.r.t. the frame. Would neuron react the same?

No! Position information is encoded!







How about flattened image + MLP?

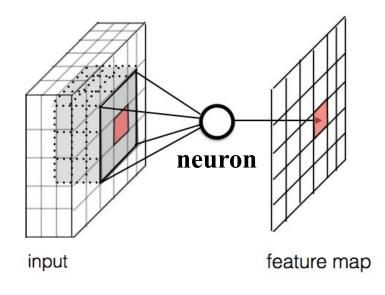
SLAC

- For an input image of 100x100 pixels RGB image, how many weights does 1 neuron carry? **30,000 for just 1 neuron!**
- Two image of the same cat, but in a different position w.r.t. the frame. Would neuron react the same?
 No! Position information is encoded!

solution? Convolutional NN!

Convolutional Neural Networks

CNNs introduce a *limitation to MLP* by forcing a neuron to look at only local, translation invariant features

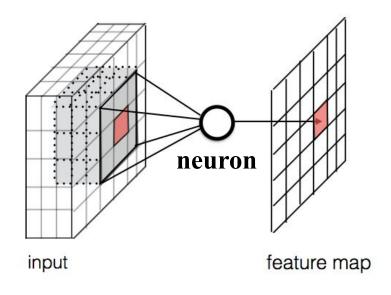


$$f_{i,j}(X) = \sigma \left(W_i \cdot X_j + b_i \right),$$

SLAC

Still a linear model! Weights=matrix, output=scalar Analyze a fixed-size, local sub-matrix from the input.

CNNs introduce a *limitation to MLP* by forcing a neuron to look at only local, translation invariant features



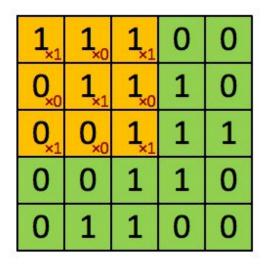
$$f_{i,j}(X) = \sigma \left(W_i \cdot X_j + b_i \right),$$

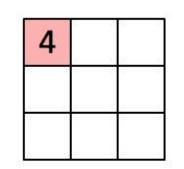
Still a linear model! Weights=matrix, output=scalar Analyze a fixed-size, local sub-matrix from the input.

- Traverse over 2D space to process the whole input
- Neuron learns translation-invariant features

Convolution 3x3 Stride 1, padding 1

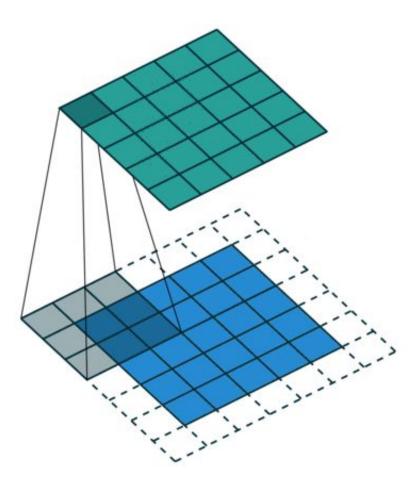
Convolution 3x3 Stride 1, no padding

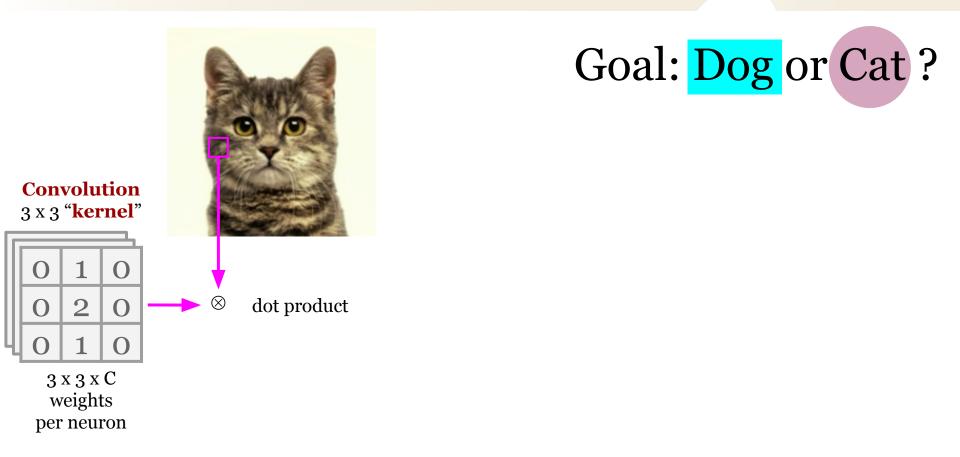


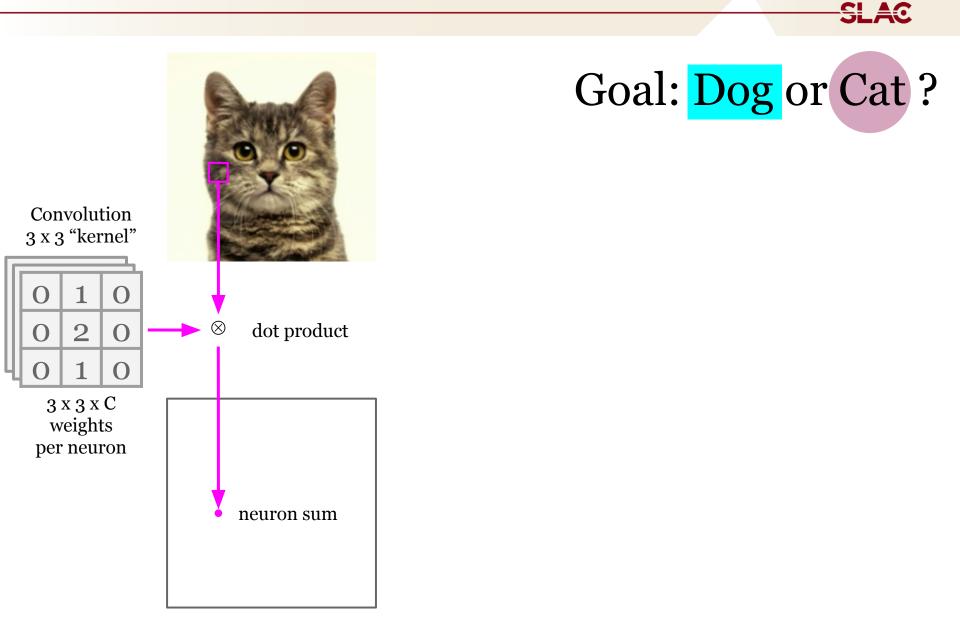


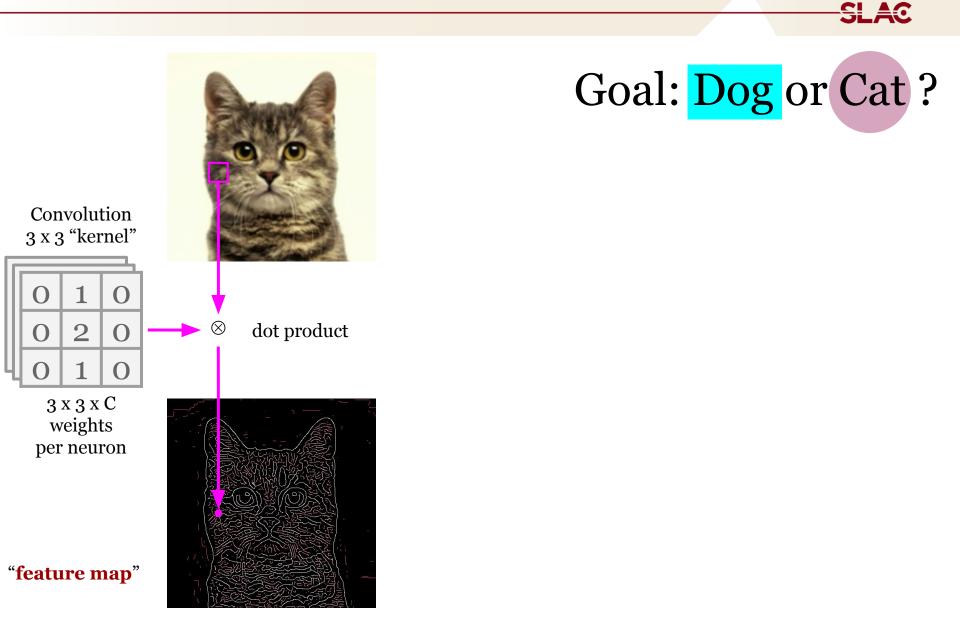
Image

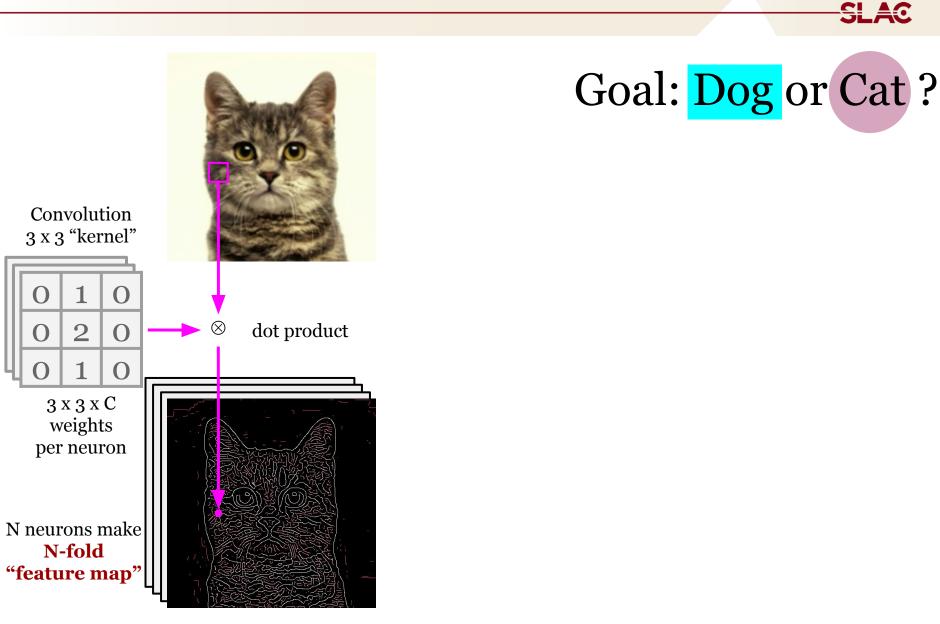
Convolved Feature

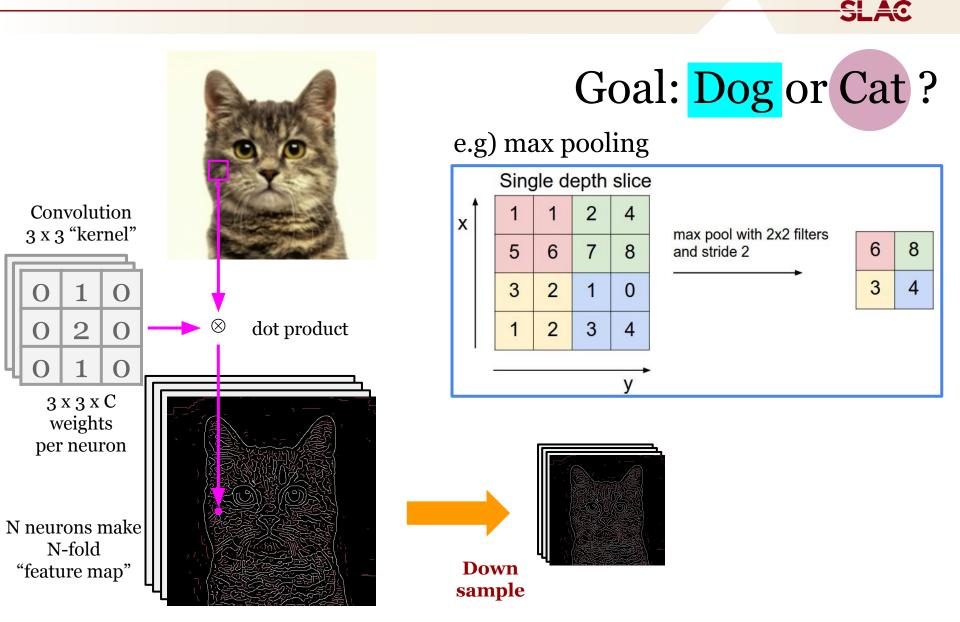


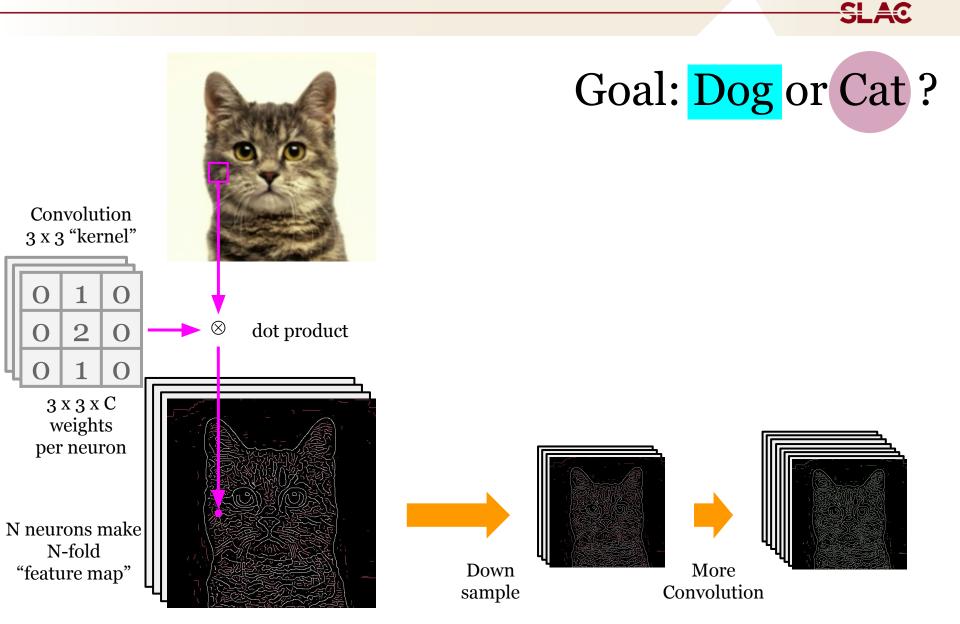


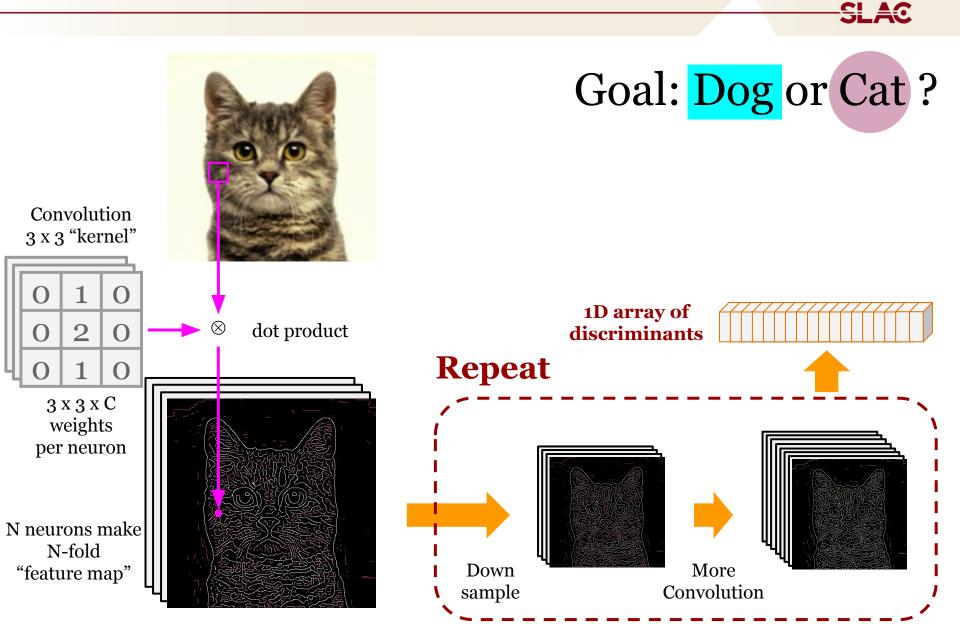


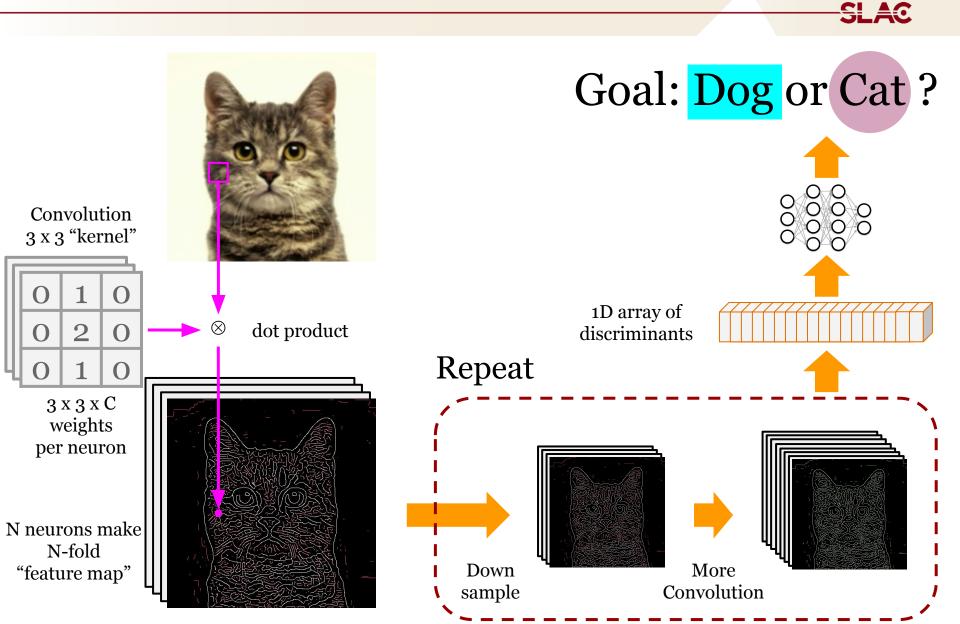


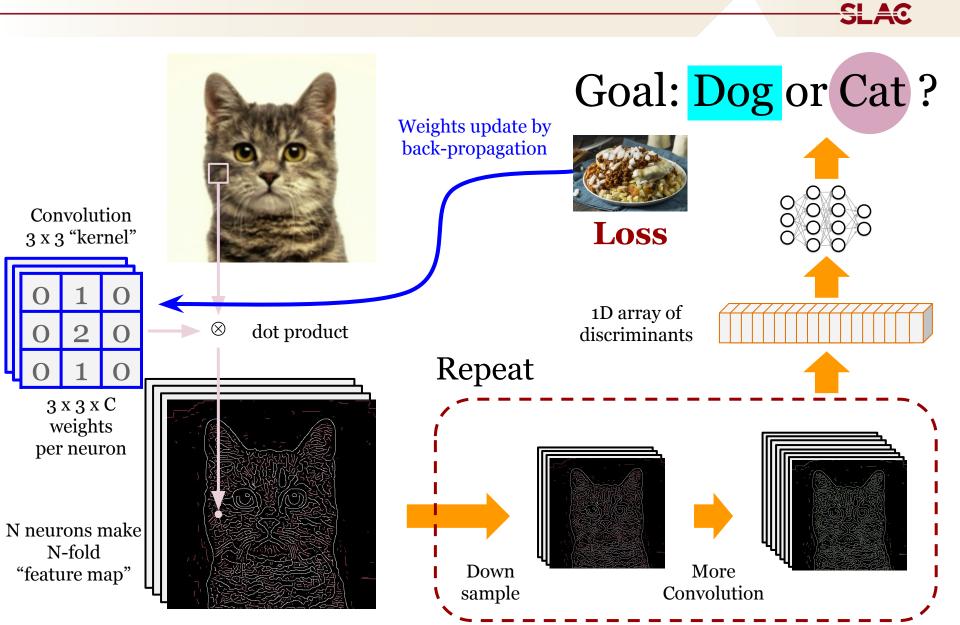




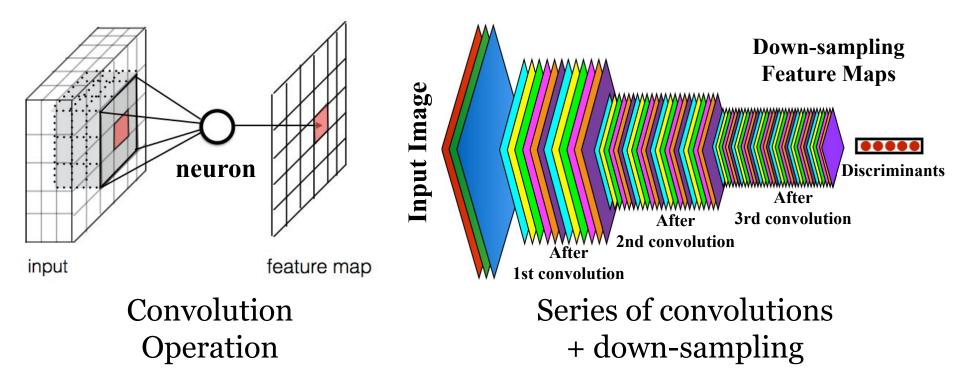








- SLAC
- CNNs are "feature extraction machine"
 - Consists of a "convolution layer" with "kernels"
 - A chain of parallelizable linear algebra operations
- CNN seen as a geometrical data transformer



Cool v.s. Adorable

- SLAC
- CNNs are "feature extraction machine"
 - Consists of a "convolution layer" with "kernels"
 - A chain of parallelizable linear algebra operations
- CNN seen as a geometrical data transformer
 Later in this lecture

Object Detection

Pixel Classification

How to compress/extract spatial information ... depends on applications! Study of CNN "architecture designs"