
Introduction to
Neural Networks

November 17th 2020
KMI-2020
Nagoya University

Kazuhiro Terao
SLAC National Lab



2

Introduction to Neural Networks
Perceptron

   1
0



Introduction to Neural Networks
Perceptron

   1
0



Introduction to Neural Networks
Perceptron



We can add another neuron 
to help (but does not yet solve 
the problem)

Introduction to Neural Networks
Perceptron



Introduction to Neural Networks
Multi-Layer Perceptron

Another layer can classify 
based on preceding layer’s output 

(of non-linear activation)

∑0

∑1

1

10

∑2



Fully-Connected Multi-Layer Perceptrons

A traditional neural network consists of a stack of layers of 
such neurons where each neuron is fully connected to 
other neurons of the neighbor layers

“Traditional neural net”

Introduction to Neural Networks
Multi-Layer Perceptron



Training Feed-forward
Neural Networks
Gradient-based Method



Introduction to Neural Networks
Training (Optimization)

F1 (x0, w1)

F2 (x1, w2)

Fi (xi-1, wi)

x0

x1

x2

Fn (xn-1, wn)

xn

⋮

⋮

N-layer MLP
x0 … input data
Fi … i-th hidden layer
xi … i-th layer output
wi … i-th layer weights
y … correct answer
L … loss (cost) function

Fo
rw

ar
d 

Pa
th



Introduction to Neural Networks
Training (Optimization)

Loss: a cost to minimize (e.g. error).

F1 (x0, w1)

F2 (x1, w2)

Fi (xi-1, wi)

x0

x1

x2

Fn (xn-1, wn)

xn

⋮

⋮

y

L (xn, y)

N-layer MLP
x0 … input data
Fi … i-th hidden layer
xi … i-th layer output
wi … i-th layer weights
y … correct answer
L … loss (cost) function

Fo
rw

ar
d 

Pa
th



Introduction to Neural Networks
Training (Optimization)

Loss: a cost to minimize (e.g. error).

Training: an optimization of 
parameters by minimizing loss.

F1 (x0, w1)

F2 (x1, w2)

Fi (xi-1, wi)

x0

x1

x2

Fn (xn-1, wn)

xn

⋮

⋮

y

L (xn, y)



Introduction to Neural Networks
Training (Optimization)

Loss: a cost to minimize (e.g. error).

Training: an optimization of 
parameters by minimizing loss.

Gradient Descend: an iterative
approach to optimize weights in order to
minimize the loss.
● Define & measure the error
● Compute ∂L/∂wn = ∇W 
● Update weights: Wnew = W - ƛ ∇W
… where ƛ is called a “learning rate”

F1 (x0, w1)

F2 (x1, w2)

Fi (xi-1, wi)

x0

x1

x2

Fn (xn-1, wn)

xn

⋮

⋮

y

L (xn, y)



Introduction to Neural Networks
Backpropagation: how to compute gradients

How can we compute the gradient for the i-th layer?

L(xn,y) = L( Fn(xn-1,wn),y) = … = L( Fn(...Fi(xi-1,wi)...),y)



Introduction to Neural Networks
Backpropagation: how to compute gradients

How can we compute the gradient for the i-th layer?

L(xn,y) = L( Fn(xn-1,wn),y) = … = L( Fn(...Fi(xi-1,wi)...),y)

(chain rule)⋯
∂L 
∂wi

∂L 
∂xn

∂xn 
∂xn-1

∂xn-1 
∂xn-2

∂xi+1 
∂xi

∂xi 
∂wi

⋅= ⋅ ⋅



Introduction to Neural Networks
Backpropagation: how to compute gradients

How can we compute the gradient for the i-th layer?

L(xn,y) = L( Fn(xn-1,wn),y) = … = L( Fn(...Fi(xi-1,wi)...),y)

(chain rule)

Example: quadratic loss = ∑ (xn - y)2 
m=1

m

∂L 
∂xn

= ∑ (2xn - 2y) 
m=1

m

⋯
∂L 
∂wi

∂L 
∂xn

∂xn 
∂xn-1

∂xn-1 
∂xn-2

∂xi+1 
∂xi

∂xi 
∂wi

⋅= ⋅ ⋅

∂L 
∂xn

= ∑ (2xn - 2y)T 
m=1

m
… or  if xn and y are 

column vector



Introduction to Neural Networks
Backpropagation: how to compute gradients

How can we compute the gradient for the i-th layer?

L(xn,y) = L( Fn(xn-1,wn),y) = … = L( Fn(...Fi(xi-1,wi)...),y)

⋯
∂L 
∂wi

∂L 
∂xn

∂xn 
∂xn-1

∂xn-1 
∂xn-2

∂xi+1 
∂xi

∂xi 
∂wi

⋅= ⋅ ⋅ (chain rule)

∂L 
∂xi

= … can compute iteratively
(“Back” propagation)

∂Fi(xi-1, wi)
∂xi-1

∂L 
∂xi-1

∂L 
∂xi

∂xi 
∂xi-1

⋅
∂L 
∂xi

⋅= =

If we know (gradient at i-th layer), then we can calculate:∂L 
∂xi



Introduction to Neural Networks
Backpropagation: how to compute gradients

Fi (xi-1, wi)

Fo
rw

ar
d 

Pa
th

xi-1

xi

∂L 
∂xi

∂L 
∂xi-1

B
ackw

ard Path

How can we compute the gradient for the i-th layer?
i-th layer



Introduction to Neural Networks
Backpropagation: how to compute gradients

Fi (xi-1, wi)

Fo
rw

ar
d 

Pa
th

xi-1

xi

∂L 
∂xi

∂L 
∂xi-1

B
ackw

ard Path

How can we compute the gradient for the i-th layer?
i-th layer

Input:
∂L 
∂xi

∂Fi(xi-1, wi)
∂xi-1

∂L 
∂xi-1

∂L 
∂xi

⋅=

xi-1

Output (we compute):

(given)

Fi(xi-1, wi)=xi

Weight Update: wi - ƛ∇wi

where:
∂Fi(xi-1, wi)

∂wi

∂L 
∂wi

∂L 
∂xi

⋅=∇wi =



Introduction to Neural Networks
Backpropagation: how to compute gradients

F (xin, w)

Fo
rw

ar
d 

Pa
th

xin

xout

∂L 
∂xout

∂L 
∂xin

B
ackw

ard Path

How can we compute the gradient for the i-th layer?
i-th layer Example: linear transformation

F(xin, w) = w ∙ xin

= ∙

Let’s generalize for a tensor input

e.g.)



Introduction to Neural Networks
Backpropagation: how to compute gradients

F (xin, w)

Fo
rw

ar
d 

Pa
th

xin

xout

∂L 
∂xout

∂L 
∂xin

B
ackw

ard Path

How can we compute the gradient for the i-th layer?
i-th layer Example: linear transformation

F(xin, w) = w ∙ xin

= ∙

Let’s generalize for a tensor input

e.g.)

∂L 
∂xin

∂L 
∂xout

⋅= w



Introduction to Neural Networks
Backpropagation: how to compute gradients

F (xin, w)

Fo
rw

ar
d 

Pa
th

xin

xout

∂L 
∂xout

∂L 
∂xin

B
ackw

ard Path

How can we compute the gradient for the i-th layer?
i-th layer Example: linear transformation

F(xin, w) = w ∙ xin

Let’s generalize for a tensor input

∂L 
∂xin

∂L 
∂xout

⋅= w

∂L 
∂w

∂L 
∂xout

⋅= xin

= ∙wnew = w - ƛ ∂L 
∂w(   )

T



Introduction to Neural Networks
Activation Functions

Sigmoid Tanh

ReLU Leaky ReLU

● linear response to +∞
● suited for deep NN
● zero gradient for <0

● probabilistic 
● non-negative values
● vanishing gradients...

● gradients in all regions
● “leakiness” parameter

● similar to sigmoid
● 0-centered, non-zero 

response in <0



Introduction to Neural Networks
Activation Functions & Initialization of Weights

Weights Initialization
● Random values to set different neuron states
● Not too large or too small: gradients become 

negligible for tanh and sigmoid activation layers! 
(positive large value not an issue for ReLU)

● Gaussian @ (𝞵,𝞼) = (0,1)?
○ Slight modification: normalize such that the 

variance of a signal strength stays similar (0~1) 
across layers (depends on # of filters)

○ See more details here (CS231)
○ Xavier initialization, He (MSRA) initialization

http://cs231n.github.io/neural-networks-2/#init
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://arxiv.org/pdf/1502.01852.pdf


Introduction to Neural Networks
Gradient-based Optimization

Start: some random initial set of parameters
Goal: minimize the overall loss = sum over all samples
How: SGD from yesterday :)

Parameter Phase Space

Start

Goal



Introduction to Neural Networks
Gradient-based Optimization

Adaptive learning rate (LR)
Ideally start with a larger LR to quickly
converge, then decrease the LR to
fine-tune near the minimum. 
Warning! too small LR rate is not only
slow but can trap in false minimum.



Introduction to Neural Networks
Gradient-based Optimization

Adaptive learning rate (LR)
Ideally start with a larger LR to quickly
converge, then decrease the LR to
fine-tune near the minimum. 
Warning! too small LR rate is not only
slow but can trap in false minimum.

Momentum
The direction of the steepest descent can be almost
perpendicular if the ellipse is elongated…
A solution is to average the history
of past updates. This accumulates
small updates in the right direction



Introduction to Neural Networks
Gradient-based Optimization

Popular Visualization of Optimizers (not mine)

● Excellent lecture here (CS232)
● Want to try by yourself ? You can get started here.
● Popular choices: vanila SGD and Adam

Image Credit: Alec Radford

http://cs231n.github.io/neural-networks-3/#sgd
http://louistiao.me/notes/visualizing-and-animating-optimization-algorithms-with-matplotlib/
https://twitter.com/alecrad


Introduction to Neural Networks
Summary

Neural Network
● Each neuron produces a “feature”, activation function 

can add non-linearity, and additional layer can 
represent non-linear functional approximation.

Gradient-based Optimization
● Essentially a composite function = chain rule!
● Initialization should be non-zero random values
● Flavors of gradient-based optimizers to take into 

account for the error surface



Backup Slides



Cost Functions &
Activation Functions



1. Mean Absolute Error (MAE, L1 loss)

Introduction to Neural Networks
Loss/Cost Functions (Regressions)

MAE =
∑∣xpred - ytrue∣

n

n
● Constant magnitude 

gradient everywhere

● Adaptive LR critical 
near the minimum 



1. Mean Absolute Error (MAE, L1 loss)

Introduction to Neural Networks
Loss/Cost Functions (Regressions)

2. Mean Square Error (MSE, L2 loss)

MSE =
∑(xpred - ytrue)

n

n 2

● Constant magnitude 
gradient everywhere

● Adaptive LR critical 
near the minimum 

●  Adaptive LR not 
needed

● Huge gradient far 
from the minimum 

MAE =
∑∣xpred - ytrue∣

n

n



1. Mean Absolute Error (MAE, L1 loss)

Introduction to Neural Networks
Loss/Cost Functions (Regressions)

2. Mean Square Error (MSE, L2 loss)

MSE =
∑(xpred - ytrue)

n

n 2

● Constant magnitude 
gradient everywhere

● Adaptive LR critical 
near the minimum 

●  Adaptive LR not 
needed

● Huge gradient far 
from the minimum 

3. Hubar Loss 

Hubar =
0.5 (xpred - ytrue)   ⋯ if ∣xpred - ytrue∣ < 𝛿
𝛿 ∣xpred - ytrue∣ - 0.5 𝛿   ⋯ otherwise

2

2

MAE =
∑∣xpred - ytrue∣

n

n



Cross-Entropy Loss (entropy, softmax)

● Also called multinomial logistic loss

● Probability of being a class i in N categories

● Cross-entropy loss  

Introduction to Neural Networks
Loss/Cost Functions (Classification)

p i (y i) =
exp(xi)

∑exp(xj)
N

j=1

L  (xi, y i) = - log 
exp(xi)

∑exp(xj)
N

j=1

● Binomial is a special case where 
probability becomes sigmoid

● Entropy loss minimization is 
maximum likelihood method. 

● Others: hinge (SVM) loss


