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1iDark
The intelligent dark 
matter survey

A research collective of physicists and data scientists to solve dark matter problems using machine learning



WHAT IS DARKMACHINES?
▸ Research collective of about 200 researchers
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WHAT IS DARKMACHINES?
▸ Research collective of about 200 researchers 

▸ ML & DM experts combining knowledge to solve hard problems 

▸ Multidisciplinary: eg. ML experts joined from biomedical imaging 

▸ Challenge based (DM experts deliver data, ML experts deliver solution) 

▸ Challenges are self-organised by challenge leaders 

▸ Each challenge produces 1+ papers 

▸ Anyone can join if interested
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WHAT IS DARKMACHINES?
▸ Research collective of about 200 researchers 

▸ ML & DM experts combining knowledge to solve hard problems 

▸ Multidisciplinary: eg. ML experts joined from biomedical imaging 

▸ Challenge based (DM experts deliver data, ML experts deliver solution) 

▸ Challenges are self-organised by challenge leaders 

▸ Each challenge produces 1+ papers 

▸ Anyone can join if interested 

▸ Yearly workshops (except this year..)
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MULTIDISCIPLINARY
▸ ML methods are “discipline-independent”
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MULTIDISCIPLINARY
▸ ML methods are “discipline-independent” 

▸ When you strip away the (astro)physics, almost any problem becomes a data 
science problem 

▸ Interpret satellite data -> computer vision 

▸ Finding new physics in particle collisions -> anomaly detection 

▸ Gravitational wave detection -> time-series analysis 

▸ … 

▸ DarkMachines was founded with this in mind:  
experts in one field can contribute their methods in another

6



TOPICS
▸ Exploring high-D parameter spaces 

▸ Unsupervised collider searches 

▸ Generative models as event 
generators 

▸ Analysis of gamma-ray Galactic 
Center
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▸ Sampling methods 

▸ Anomaly detection 

▸ VAEs 

▸ Computer vision & Bayesian deep 
learning



EXPLORING HIGH-D PARAMETER SPACES
▸ Many problems can be broken down to  

“find optimal set of parameters given some (log-)likelihood” 

▸ For example: which set of parameters in the pMSSM can explain the flux from 
the Galactic Center excess?
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EXPLORING HIGH-D PARAMETER SPACES
▸ Many problems can be broken down to  

“find optimal set of parameters given some (unknown) (log-)likelihood function” 

▸ For example: which set of parameters in the pMSSM can explain the flux from 
the Galactic Center excess?
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https://arxiv.org/abs/1502.05703

DM candidate

Gamma-ray flux due  
to DM annihilation

https://arxiv.org/abs/1502.05703


EXPLORING HIGH-D PARAMETER SPACES
▸ Many problems can be broken down to  

“find optimal set of parameters given some (log-)likelihood” 

▸ For example: which set of parameters in the pMSSM can explain the flux from 
the Galactic Center excess?
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Combination of 19 parameters (=model)

Calculate SUSY model & DM candidate parameters

Check if model is excluded by any SUSY/DM constraints

Calculate gamma-ray flux from DM annihilation

Calculate likelihood of this gamma-ray flux explaining the flux from GCE

Takes about 10 seconds



EXPLORING HIGH-D PARAMETER SPACES
▸ Curse of dimensionality 

▸ Suppose you need 10 different values for every parameter (way too low) to scan 
the whole parameter space 

▸ Number of combinations is 10^19
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EXPLORING HIGH-D PARAMETER SPACES
▸ Curse of dimensionality 

▸ Suppose you need 10 different values for every parameter (way too low) to scan 
the whole parameter space 

▸ Number of combinations is 10^19 

▸ Total time required to calculate everything is 100x age of the universe! 
 

▸ Need another way to cleverly scan the parameter space
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EXPLORING HIGH-D PARAMETER SPACES
▸ Visualise: 1D parameter space 

▸ Remember: you don’t know the parameter 
space, you can only sample points (x) and 
get the likelihood in that point (y) 

▸ Finding the minimum is easy in the top 
plot (gradient descent from any random 
starting position)
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EXPLORING HIGH-D PARAMETER SPACES
▸ Visualise: 1D parameter space 

▸ Remember: you don’t know the parameter 
space, you can only sample points (x) and 
get the likelihood in that point (y) 

▸ Finding the minimum is easy in the top 
plot (gradient descent from any random 
starting position)  

▸ Finding the minimum in the second plot is 
way harder. Depending on the starting 
position, you end up in different minima

14

 

https://arxiv.org/abs/1502.05703


EXPLORING HIGH-D PARAMETER SPACES
▸ Possible solution: Gaussian particle filtering
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EXPLORING HIGH-D PARAMETER SPACES
▸ Found region in parameter space of 10^-37 of the total volume 

▸ Not excluded from any experiment, still after 5 years
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https://arxiv.org/abs/1502.05703 https://arxiv.org/abs/1709.10429

https://arxiv.org/abs/1502.05703


EXPLORING HIGH-D PARAMETER SPACES
▸ Gaussian particle filter is just one method to scan 

parameter spaces 
Super parallelizable but does not use gradient 
information 

▸ Genetic algorithms  

▸ Nested sampling (multinest) 

▸ Tunneling methods 

▸ When does which method work best? 

▸ Challenge: hidden test function like on the right 

▸ Try different methods and see which one performs 

▸ Results will be published soon 
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 http://infinity77.net/global_optimization

https://arxiv.org/abs/1502.05703
http://infinity77.net/global_optimization


UNSUPERVISED COLLIDER SEARCHES
▸ Second topic: find new physics in particle colliders
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UNSUPERVISED COLLIDER SEARCHES
▸ Second topic: find new physics in particle colliders 

▸ Mainly about BSM theories and the LHC 

▸ Typical: theory finds a particle candidate, then experiment tries to find or 
exclude it
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exclude it 
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UNSUPERVISED COLLIDER SEARCHES
▸ Second topic: find new physics in particle colliders 

▸ Mainly about BSM theories and the LHC 

▸ Typical: theory finds a particle candidate, then experiment tries to find or 
exclude it 

▸ Curse of dimensionality!  
You cannot exclude the whole pMSSM ever, and that’s just one theory… 

▸ Alternative: 

▸ The experiment records data 

▸ Compare with expectation from only SM hypothesis 

▸ If rejected -> look at the events that reject that hypothesis and try to explain

21

 

https://arxiv.org/abs/1502.05703


UNSUPERVISED COLLIDER SEARCHES
▸ Second topic: find new physics in particle colliders 

▸ Mainly about BSM theories and the LHC 

▸ Typical: theory finds a particle candidate, then experiment tries to find or 
exclude it 

▸ Curse of dimensionality!  
You cannot exclude the whole pMSSM ever, and that’s just one theory… 

▸ Alternative: 

▸ The experiment records data 

▸ Compare with expectation from only SM hypothesis 

▸ If rejected -> look at the events that reject that hypothesis and try to explain 

▸ (=unsupervised search of new physics)

22

 

https://arxiv.org/abs/1502.05703


UNSUPERVISED COLLIDER SEARCHES
▸ Typical setup of the experiment: 

▸ Compare experiment data (real data) to expected data from only SM 
(simulated data) 

▸ Real data contains SM plus possible, but unknown, signal 

▸ Two datasets:  

▸ SM only (from simulation) 

▸ SM + possible signal (from real data)
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UNSUPERVISED COLLIDER SEARCHES
▸ For evaluating performance, simulate also signals and pretend you don’t know. 

Gives two datasets: 

▸ Train on SM only simulated data 

▸ Test on SM+signal simulated data
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UNSUPERVISED COLLIDER SEARCHES
▸ For evaluating performance, simulate also signals and pretend you don’t know. 

Gives two datasets: 

▸ Train on SM only simulated data 

▸ Test on SM+signal simulated data 

▸ Counting experiment: 

▸ From SM only hypothesis you expect λ events 

▸ You measure k events 

▸ (actual statistics a bit more complex, but this is the general idea) 

▸ Filter the data such that you “cut” out the SM so only signal is left, using only SM 
as your training data
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UNSUPERVISED COLLIDER SEARCHES 26

Outlier detection

Density estimation

Two types of signals:



UNSUPERVISED COLLIDER SEARCHES
▸ Focus on outlier detection 

▸ Huge field with many methods, focus on 
autoencoders
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UNSUPERVISED COLLIDER SEARCHES
▸ Focus on outlier detection 

▸ Huge field with many methods, focus on 
autoencoders 

▸ One slide neural network introduction:
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UNSUPERVISED COLLIDER SEARCHES
▸ Focus on outlier detection 

▸ Huge field with many methods, focus on 
autoencoders 

▸ One slide neural network introduction: 
 
 
 
 
 
 
 
 

▸ (training a neural network is a high-D 
parameter optimisation problem too!)
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UNSUPERVISED COLLIDER SEARCHES
▸ Autoencoder 

 
 
 
 
 
 
 
 
 
 
 
 
 
Anomaly score = normalised reconstruction loss (eg MSE)
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UNSUPERVISED COLLIDER SEARCHES

▸ Example: credit card fraud detection with autoencoder
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https://medium.com/@curiousily/credit-card-fraud-detection-using-autoencoders-in-keras-tensorflow-for-hackers-part-vii-20e0c85301bd

No fraud Fraud

Can only reconstruct well inside the box

https://medium.com/@curiousily/credit-card-fraud-detection-using-autoencoders-in-keras-tensorflow-for-hackers-part-vii-20e0c85301bd


UNSUPERVISED COLLIDER SEARCHES

▸ Dataset: www.phenomldata.org 

▸ Contains >30GB of simulated LHC events 

▸ Separated in background and various signals
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http://www.phenomldata.org
https://medium.com/@curiousily/credit-card-fraud-detection-using-autoencoders-in-keras-tensorflow-for-hackers-part-vii-20e0c85301bd


UNSUPERVISED COLLIDER SEARCHES

▸ You can use a ROC 
curve and the AUC 
to determine how 
well an algorithm does
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No fraud Fraud

https://medium.com/@curiousily/credit-card-fraud-detection-using-autoencoders-in-keras-tensorflow-for-hackers-part-vii-20e0c85301bd


UNSUPERVISED COLLIDER SEARCHES

▸ You can use a ROC 
curve and the AUC 
to determine how 
well an algorithm does 

▸ Additionally, 
determine signal 
efficiency at a  
predetermined  
background efficiency

34

 
https://arxiv.org/abs/2010.07940

SPOILER

GMM IF

https://medium.com/@curiousily/credit-card-fraud-detection-using-autoencoders-in-keras-tensorflow-for-hackers-part-vii-20e0c85301bd


AUTOENCODERS

▸ If autoencoders are bad, why are they so popular? 

▸ The bottleneck layer interesting 

▸ Transforms 4D to 2D  

▸ Latent space
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https://medium.com/@curiousily/credit-card-fraud-detection-using-autoencoders-in-keras-tensorflow-for-hackers-part-vii-20e0c85301bd


AUTOENCODERS 36

▸ Autoencoders have no ordering 
in latent space

Assume 2D 
easy viz.



AUTOENCODERS 37

▸ Autoencoders have no ordering 
in latent space

Assume 2D 
easy viz.

Latent dim 1

Latent dim 2



AUTOENCODERS 38

▸ Input slightly different 
than training set —> 
reconstruction loss high, because 
latent space is ill-defined there  

▸ Not robust 

▸ What is between  
the data points? ?

?



AUTOENCODERS 39

▸ If only the points could be grouped together… 

▸ Unsupervised clustering, interpolation between data 
points …

2

0



VARIATIONAL AUTOENCODERS 40



VAE

▸ Force ordering in latent space 

▸ During training, you are 
minimising some loss function 

▸ For regression (normal AE): 
MSE(output - input)
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VAE

▸ Force ordering in latent space 

▸ During training, you are  
minimising some loss function 

▸ For regression (normal AE): 
MSE(output - input) 

▸ Add KL-divergence term:  
Σi KL(𝓝(μi, σi), 𝓝(0,1)) := KL(μ,σ) 

▸ So 𝓛 = MSE(output - input) + KL(μ,σ)
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VAE

▸ The KL divergence punishes latent space values far away 
from the center 

▸ Also, every point has a variance that is pushed to 1 

▸ Balance MSE and KL —> group  
similar structures around the  
center while keeping RL in check
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LATENT SPACE

▸ Same example, but now a VAE
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VAE

▸ Balancing MSE and KL is tricky 

▸ Balance using another hyperparameter β 

▸ 𝓛 = (1-β) * MSE(output - input) + β * KL(μ, σ) 

▸ β-VAE

45

β Avg var Avg mean

1 1 1.89E-09

5E-01 0.99999905 2.35E-07

5E-02 0.86448085 …

5E-03 0.554529

5E-04 0.3784553

5E-05 0.09676677

5E-06 0.008932933

0 0.0000442



UNSUPERVISED COLLIDER SEARCHES

▸ Now apply the AE/IF/GMM from before on the latent 
space of a VAE trained on the background events
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https://arxiv.org/abs/2010.07940

4-vector space Latent space of VAE

https://medium.com/@curiousily/credit-card-fraud-detection-using-autoencoders-in-keras-tensorflow-for-hackers-part-vii-20e0c85301bd


GENERATIVE MODELS AS EVENT GENERATORS

▸ Topic: generative models as event generators
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GENERATIVE MODELS AS EVENT GENERATORS

▸ Topic: generative models as event generators 

▸ To be able to do the previous, need lots of events 

▸ Event generation is slow, especially if you need billions of 
events and need to run the whole LHC simulation pipeline
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VAE

▸ Use the latent space and decoder as generative model 

▸ Explore the latent space
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PCA on the 
latent variables



PLAYING WITH LATENT SPACES
▸ Train VAE on face images 

▸ Change the latent space variables
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PLAYING WITH LATENT SPACES

▸ Or 3D objects 
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PLAYING WITH LATENT SPACES

▸ Or 3D objects 
 
 
 
 

▸ Latent space = abstract representation of your data 

▸ Encoder maps input to gaussians in latent space 
= Gaussian mixture  —> you can do lots of stuff
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EVENT GENERATORS USING VAE

▸ Set up a VAE, train on the events you want to generate
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EVENT GENERATORS USING VAE

▸ Set up a VAE, train on the events you want to generate 

▸ Run representative set through trained encoder to get PDF 
of the dataset in latent space 

▸ (=sum of gaussians)
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EVENT GENERATORS USING VAE

▸ Set up a VAE, train on the events you want to generate 

▸ Run representative set through trained encoder to get PDF 
of the dataset in latent space 

▸ (=sum of gaussians) 

▸ Sample from the PDF, run through decoder
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EVENT GENERATORS USING VAE
▸ It generates events in 28D, show 8 

▸ Z=20, show 4 

▸ Using B-VAE is orders of magnitude faster 
(10 million events in 3 minutes)
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ANALYSE THE GALACTIC CENTER

▸ Topic: analyse the GC and the possible DM nature of the 
GCE
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ANALYSE THE GALACTIC CENTER

▸ Topic: analyse the GC and the possible DM nature of the 
GCE
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GC Excess

▸ V1: what is the fraction of diffuse (dm) and point source 
(msp) in the GC excess

https://arxiv.org/abs/1708.06706



ANALYSE THE GALACTIC CENTER
▸ Use convolutional neural networks 

 
 
 
 
 
 
 
 

▸ Utilise spatial short-range correlations to lower number of 
trainable weights 

▸ Translation independent

59



A LOOK INSIDE THE NETWORK



RESULTS

RESULTS

real data

▸ Train using 3 background models, test on 2 others 

▸ Test data: 2x30000 test points



CAVEATS
▸ Used 5 different background models, but were very similar 

▸ Made some assumption on parameters that are not so sure 
(eg steepness parameter gamma=0.8 in gFNW profile 
while real value [0.5,1.2]) 

▸ Variance on the test set is nog a good uncertainty measure



NEW APPROACH
▸ More realistic modelling 

▸ Use 17-25 parameters that together make up the 
background and the GC excess, instead of fixed 
background models 

▸ Use a range of uncertain parameters (eg gamma) 

▸ Use 5 energy bins instead of 1 

▸ Use network that can quantify uncertainty

PRELIMINARY



BAYESIAN DEEP LEARNING
▸ Use Bayesian neural networks to quantify uncertainties 
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https://twitter.com/david__kha/status/865093285886304256
http://mlg.eng.cam.ac.uk/yarin/blog_3d801aa532c1ce.html


BAYESIAN DEEP LEARNING
▸ Use Bayesian neural networks to quantify uncertainties 

▸ Aleatoric uncertainty: “noise in the data” 
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BAYESIAN DEEP LEARNING
▸ Use Bayesian neural networks to quantify uncertainties 

▸ Aleatoric uncertainty: “noise in the data” 
 

▸ Epistemic uncertainty: “NN uncertainty — imperfect training” 

▸ Monte Carlo dropout
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 http://mlg.eng.cam.ac.uk/yarin/blog_3d801aa532c1ce.html

https://twitter.com/david__kha/status/865093285886304256
http://mlg.eng.cam.ac.uk/yarin/blog_3d801aa532c1ce.html


BAYESIAN DEEP LEARNING 67

PRELIMINARY

https://arxiv.org/abs/1910.13236

Teaser of the result:

We applied the same method on 
predicting parameters from BH images 
from EHT simulations



SUMMARY
▸ DarkMachines is a research collective to tackle important and 

interesting problems in DM using ML 

▸ Brings together experts from both fields 

▸ Explained topics 

▸ High-D parameter optimisation 

▸ Anomaly detection using AE/VAE 

▸ Event generation using B-VAE 

▸ Parameter inference using Bayesian CNNs 

▸ There are more active challenges: 

▸ Gravitational lensing, gamma-ray point source detection, …
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JOIN?

▸ Many different DM applications (HEP, astro, detectors, 
theoretical) 

▸ Many different ML approaches (regression, classification, 
generative modelling, outlier detection, …) 

▸ For ML everything is just data — learn from each other and 
from other fields! 

▸ Interested? Join: darkmachines.org 
Challenges can be joined via CERN mailing lists 
or contacting the challenge coordinators
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http://darkmachines.org

