レプトンフレーバーを破る タウレプトン崩壊事象の探索

名古屋大学 宮崎由之

Nagoya University

イントロダクション

イントロダクション(1)

 レプトンフレーバー (電子数、ミュー数、タウ数)
 ⇒標準模型では保存する(ようにできている)
 ニュートリノ振動が発見により、
 ⇒ニュートリノのレプトンフレーバーは 破れている。

荷電レプトンでは ニュートリノ振動を考慮してもBr(τ→lγ) <O(10⁻⁵⁰) ⇒今の実験では観測不可能

標準模型を超える多くの新しい物理では、 レプトンフレーバーの破れ(LFV)を予言している ⇒もし観測できれば、新しい物理の存在の証明 て

> 荷電レプトンの中でτレプトンに注目 質量が大きい粒子のため、新しい物理の感度が強い

イントロダクション(2)

擬スカラーHiggs(A)の時は ⇒終状態に擬スカラーメソン (A→ss→η、η')

(6.5-16)X10⁻⁸<Br(τ→IP⁰) @401fb⁻¹ (PLB648,341(2007))

スカラーHiggs(h,H)の時は ⇒終状態にスカラーメソン or Kk (h/H→ss→f₀(980) or Kk)

Br(τ→μf₀(980):Br(τ→μμμ):Br(τ→μη) = 1.3 : 0.54 :1

(C.H.Chen et.al, Phys.Rev.D74:035010,2006)

イントロダクション(3)

イントロダクション(4)

τ→lf₀(980) 探索は行われていなく、 今回が最初の探索

• $\tau \rightarrow lhh'$ (h,h' = $\pi \pm$ or K±) LFV($\tau \rightarrow l^+h'$)だけなく、Lepton Number Violation ($\tau \rightarrow l^+h^-h'^+$)も解析 (全部で14モード)

以前の解析

Br< (1.6-8.0) × 10⁻⁷@Belle 158fb⁻¹

Br< (0.7-4.8) × 10⁻⁷@BaBar 221fb⁻¹

・、、、
・、、
・、、
・、、
・、、
・、、
・、、
・、、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、
・、

・、
・、
・、
・、
・、
・、
・、
・、
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・</

X4@Belle and X3@BaBar

解析方法

KEKB加速器とBelle検出器

解析方法

信号事象と背景事象

解析結果

τ→lf₀(980) τ→lhh

検出効率 予想される背景事象数 μ f0:6.02% 0.11±0.08 events 信号領域に残ったデータ ef0:5.80% 0.10±0.07 events ⇒信号は両モードとも観測されず

90%C.L.の上限値で分岐比を設定

Br(τ→If₀(980))xBr(f₀(980)→π⁺π⁻) < $\frac{S_{90}}{2N\tau\tau \times Eff_{...}}$

$\tau \rightarrow lhh'(1)$

For h/h' (p_T > 0.1GeV/c) \Rightarrow L(K/ π) > 0.8/<0.4 for K/ π

- p_{lepton} & Thrust ⇒事象ごとに決定 $\int_{0}^{0} \int_{1000}^{1000} \int_{0}^{+ Data} \tau^{-} \rightarrow \mu^{-} K^{+} K^{-}} \int_{0}^{+ Cata} \int_{0}^{+ T T MC} \int_{0}^{+ T T MC} \int_{0}^{+ Cata} \int_{0}^{+ Cat} \int_{0}^{+ Cata} \int$
- K_S and K_L veto
- K-veto for tag-side in $\mu K\pi$ modes
- e-veto for tag-side in ehh modes

$\tau \rightarrow lhh'(2)$

• $\tau \rightarrow \mu hh'$

Expected BG: (0.1-1.3) events \rightarrow Main BG generic $\tau\tau$ and qq Eff. (2.1-3.8)%

選別後の信号領域 •2 events for μ-π+K-

- •1 event for μ -K+ π -, μ - π +K-
- 0 event for other modes

予想される背景事象にくらべて、^{-0.2} 観測された信号数は優位性は無し

Br(τ→µhh') < (3.4~15)x10⁻⁸ (preliminary) ⇒ PDGより(1.8~8.5)倍向上

$\tau \rightarrow lhh'(3)$

まとめ

Belle実験で得られた6x10⁸のτレプトン対のデータを使用し、 レプトンフレーバーを破るτレプトン崩壊事象の探索

事象選択を最適化する事により 背景事象を十分に抑制に成功

* Br(τ→lf₀(980)) x Br(f₀(980)→π+π-) <(3.2~3.4)x10⁻⁸ @671fb⁻¹ ⇒ 初めての探索 (PLB 672,317(2009))

*Br(τ→ehh') < (4.4~8.7)×10⁻⁸ @671b⁻¹ preliminary *Br(τ→µhh') < (3.4~15)×10⁻⁸ @671b⁻¹ preliminary ⇒(1.8~8.5)倍向上 論文を準備中