

Review on the LHC Run2 results

KMI2017, 5th-7th January 2017 Yu Nakahama (KMI, Nagoya University)

Outline of this talk

- Introduction to LHC and the ATLAS Run2 experiment
- Review of physics results
 - Standard Model measurements
 - Higgs physics
 - Searches for New Physics phenomena; Exotics, SUSY
- Summary

Large Hadron Collider

- LHC is an energy-frontier collider at CERN, delivering proton-proton collision events
 - to two multi-purpose detectors; ATLAS and CMS
 - to dedicated detectors;
 LHCb for B-physics studies and
 ALICE for heavy-ion studies
- Recent history and future

- LHC Run1 (2009-2012) with p-p collisions at \sqrt{s} = 7-8 TeV
- Currently in a high-energy phase at $\sqrt{s} = 13-14$ TeV, Run2 (2015-2018), followed by a bit higher luminosity phase Run3 (2021-2023)
 - I review recent physics highlights in this talk
- For future, high-luminosity LHC (2026-) and FCC (far beyond) is planned
 - B. Petersen will present the future physics program

M. Tomoto will present muon trigger upgrade (KMI's contribution)
 Review of the LHC Run2 results

The ATLAS experiment

 The ATLAS detector is a multi-purpose detector that can directly explore energy scale from O(10) GeV to O(10) TeV

- The ATLAS experiment has around 2900 collaborators from 180 institutions across 38 countries
- KMI has been contributing to ATLAS
 - with primary focuses on "Muon Detector and Trigger system", as well
- as on "Top physics and New Physics searches" KMI2017, 05/01/2017 Review of the LHC Run2 results

Physics highlights with the Run1 dataset

- Higgs discovery
 - Higgs-like particle discovery was announced on July 4th 2012 - Phys. Lett. B 716 (2012) 1-29
 - March 2013: key papers on particle properties.
 New particle declared as "a Higgs boson"
 - Citation for the 2013 Nobel Prize in Physics

 Deep and broad range of experimental results, all beautifully fitting in the Standard Model framework of elementary particle physics

\sqrt{s} = 13 TeV: parton luminosity increase

ATLAS in Run2

- Primary physics focuses
 - on New Physics searches using early datasets and
 - on measurements of Higgs properties using higher-statistics datasets
- New detectors installed
 - Innermost pixel layer (IBL); 3.4cm from the interaction point
 - Forward proton detectors (AFP);
 210m from IP

 In addition, various consolidations provide improved running at high luminosities and rates

ATLAS data taking in 2016

- The 2016 pp data taking lasted until 26th October
 - Set a record in peak luminosity: 1.4e34
 - Total dataset recorded ~36 fb⁻¹ with excellent data quality; >90% of data collected usable for analyses

Operations in the ATLAS control room

- 2016 was an extremely productive year, comparing with previous years

Trigger challenge in high luminosities

- Designed and operated a complex list of trigger selections to meet varied physics, monitoring and performance requirements
 - Typically ~2000 active trigger selections, driven by the priorities in the ATLAS physics program
 - Stable primary triggers
 - Peak output rate at Level-1; 90kHz
 - Ave. output rate at High Level to storage; 1.0kHz
 - → meeting detector operation and DAQ requirements

Main primary trigger	Trigger thresholds at HLT [GeV]		
single leptons	Isolated μ , $p_T > 26$		
	Isolated e, E_{T} > 26		
E _T ^{miss}	> 110 (in MHT, jet-based)		
single jet	ρ _T > 380		
single photon	<i>E</i> _T > 140		
di-muon for B-phys	$p_{T}(\mu_{1}, \mu_{2})$ > 6, 6 + topological/mass cuts		
di-tau	$p_{T}(\tau_1, \tau_2)$ > 35, 25+jet requirement at L1		
di-photon	<i>p</i> _T (γ ₁ , γ ₂)> 35, 25		

- Trigger menu for the rest of Run2 is being prepared for 2e34 KMI2017, 05/01/2017 Review of the LHC Run2 results

Physics Results

ATLAS has submitted 605 papers in total

- the full list here: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic</u>

- Following slides review a few selected highlights, mostly using 13 fb⁻¹ dataset, collected up to 2016 summer
 - Disclaimer; Topics here are driven by the priorities in the Run2 ATLAS physics program, by my tastes, as well as by the KMI's contributions
 - Apologies if your favorite topics are not covered

Measurements

Inclusive cross-section measurements: broad range

KMI2017, 05/01/2017

Review of the LHC Run2 results

Inclusive cross-section measurements: broad range

ttbar cross-section measurements

- High statistics allow detailed studies of production properties
 - e.g. differential cross-section measurements (Check poster by K. Kawade, the Nagoya ex-member)

W-boson mass measurement ATLAS-CONF-2016-113

- Precise measurement is motivated for a consistency test of the SM and a probe of BSM physics – yet with slow progress
- After long/huge efforts, the first ATLAS result using the 7 TeV dataset was released in Dec 2016
 - m(W)= 80.370 ± 0.019 GeV, a competitive measurement, dominated by physics modeling uncertainties as expected
 - Consistency tests of the SM

Understanding the 125 GeV Higgs

Physics of the 125 GeV Higgs

- Higgs discovery opened the door on the scalar sector
- In Run1 we measured:
 - Its spin-parity, and its mass precisely (±0.2%)
 - Production via gluon-fusion, vector-boson fusion, and with a W or Z
 - The decays to $\gamma\gamma$, WW, ZZ, and the fermionic decay to $\tau\tau$
- \rightarrow These proved true the BEH mechanism to break gauge symmetry
- → However, apart from the mass, none of these measurements are yet very precise and leave room for significant deviations. Also, important modes are still unseen (bb, ttH, µµ, Zγ, HH)
- Run2 priorities:
 - Establish and measure at 13 TeV
 - Search for ttH production to probe ttH coupling directly
 - − Search for $H \rightarrow bb$ decays
 - Search for rare decays
 - Refine measurements of couplings, mass, etc
- Expand use of H as a tool to find New Physics KMI2017, 05/01/2017 Review of the LHC Run2 results

Clear Higgs observation at 13 TeV in bosonic channels

First search for ttH production at 13 TeV by CMS

- Direct measurement of Higgs-top coupling
- CMS showed preliminary results for ttH in all major Higgs decay channels: γγ, multi-lep, bb

 Highly complex analyses, huge effort to get these done so quickly after data taking (already by Moriond 2016)

First search for ttH production at 13 TeV by ATLAS

- Direct measurement of Higgs-top coupling
- ATLAS showed preliminary results for ttH in ulletall major channels and their combination at **ICHEP 2016**

Individual channels and combination

Searches for rare Higgs decays e.g. $H \rightarrow \mu \mu$

- Beyond SM reach at present, but could have New Physics contributions?
 - Strongly resolution dependent, improve sensitivity by categorising events (low/high p, central/forward, VBF)
 - Obs limit: 4.4 times SM. Needs ~300 fb⁻¹ data to reach SM (Run3)

- Can already exclude universal Higgs coupling to fermions
 - Would have observed $H \rightarrow \mu\mu$, if same BR as $H \rightarrow \tau\tau$

Beyond the Standard Model Higgs physics

- Higgs sector may be non-minimal and/or Higgs boson may couple to New Physics
- Diverse search program is in place;

No deviations from SM found in any of these searches

Taken from: Thibault Guillemin @ SEARCH 2016

KMI2017, 05/01/2017

KMI2017, 05/01/2017

New Physics searches in Run2

- Broad search program
 - from inclusive surveys of basic event topologies
 - to dedicated searches ruling out corners of phase space
- Major extension of reach compared to Run1
- All results shown here include 2016 data
- They probe well into the TeV, even multi-TeV, mass scale range

Exploring Exotics

 \rightarrow Search as broad and general as possible (signatures, masses, rates) covering physics without guiding models

Di-photon searches

2015 ATLAS data: localised excess seen

 2.1σ global (3.9σ local) significance at 750 GeV (spin-0 search), width ~50 GeV

2016 data: no clustering around 730-750 GeV, and 3.8x more data

- 2016 data consistent with 2015 at 2.7σ
- Appears that the 2015 excess was a statistical fluctuation

Finally with 2015+2016 data

Massive di-boson searches

- Search for resonant di-boson production
 - Boosted ("fat jet") selections vital at high- p_T
 - Explored many channels with 2016 data

Overlaying limits from all WZ searches – no persistent excesses, in contrary to the Run1 excesses

Di-jet searches

• Search for New Physics in di-jet mass spectrum; bump hunter

Di-jet searches: Dark Matter Interpretation

- Complementary to mono-(jet, γ, W, Z, b, t, H, ...) searches
 - Tag DM pair (E_T^{miss}) via Initial state radiation
 - Mediator (Z') mixing with Z, H
- Mediator (Z')
 - Couples to quarks(g_q) and DM(g_{DM})
 - Dijet searches cover a broad mediator mass range
 - DM interpretation of Z' searches

Di-jet searches: Dark Matter Interpretation

• Complementary to mono-X searches; cover a broad mediator mass range – Results highly depend on choice of coupling parameters (L = $g_q \gamma^{\mu} q Z'_{\mu}$) KMI2017, 05/01/2017 Review of the LHC Run2 results 31

SUSY searches

- The case for SUSY is well known
 - Natural Dark Matter candidate in *neutralino1*
 - Can solve the fine-tuning problem if $t \sim and g \sim are$ light

the Standard Model the Super Symmetry

- In Run1 we identified:
 - $m(g\sim)>1.4$ TeV for low-mass *neutralino1*
 - m(t~)>700GeV if m(neutralino1)<100GeV</p>
- Run2 priorities:
 - Extend mass reach according to \sqrt{s} increase
 - Fill "kinematic holes" where particles are soft
 - "Leave no stone unturned" e.g. displaced decays from long-lived particles

KMI2017, 05/01/2017

SUSY search results

ATLAS SUSY Searches* - 95% CL Lower Limits Run1 data Run2 data											
	Model	ε, μ, τ, γ	Jets	Entres	∫£ dt[fb	-1] Mass limit	$\sqrt{s} = 7, 8 \text{ TeV}$ $\sqrt{s} = 13 \text{ TeV}$	Reference			
Indusive Searches	$\begin{array}{l} \text{MSUGRA/CMSSM} \\ \begin{array}{l} \tilde{q} \tilde{q}, \tilde{q} \rightarrow \varphi \tilde{k}_{1}^{0} \\ \tilde{q} \tilde{q}, \tilde{q} \rightarrow \varphi \tilde{k}_{1}^{0} \\ (\text{compressed}) \\ \tilde{z} \tilde{z}, \tilde{z} \rightarrow \varphi \tilde{k}_{1}^{0} \\ \tilde{z} \tilde{z}, \tilde{z} \rightarrow \varphi \tilde{k}_{1}^{0} \\ \tilde{z} \tilde{z}, \tilde{z} \rightarrow \varphi \tilde{k}_{1}^{0} \\ \tilde{z} \tilde{z}, \tilde{z} \rightarrow \varphi \mathcal{K}_{1}^{0} \\ \tilde{z} \tilde{z} \tilde{z}, \tilde{z} \rightarrow \varphi \mathcal{K}_{1}^{0} \\ \tilde{z} \tilde{z} \tilde{z}, \tilde{z} \rightarrow \varphi \mathcal{K}_{1}^{0} \\ \tilde{z} \tilde{z} \tilde{z} \tilde{z} \tilde{z} \\ \tilde{z} \tilde{z} \tilde{z} \tilde{z} \tilde{z} \\ \tilde{z} \tilde{z} \tilde{z} \tilde{z} \\ \tilde{z} \tilde{z} \tilde{z} \tilde{z} \\ \tilde{z} \tilde{z} \tilde{z} \tilde{z} \tilde{z} \tilde{z} \\ \tilde{z} \tilde{z} \tilde{z} \tilde{z} \\ \tilde{z} \tilde{z} \\ \tilde{z} \tilde{z} \tilde{z} \\ \tilde{z} \\ \tilde{z} \tilde{z} \\ \tilde{z} \tilde{z} \\ \tilde{z} \\ \tilde{z} \tilde{z} \\ \tilde{z} \tilde{z} \\ \tilde$	0-3 ε, μ/1-2 τ 0 mono-jet 0 3 ε, μ 2 ε, μ (SS) 1-2 τ + 0-1 2 γ γ 2 ε, μ (Z) 0	2-10 jets/3 <i>k</i> 2-6 jets 1-3 jets 2-6 jets 2-6 jets 4 jets 0-3 jets ℓ 0-2 jets 2 jets 2 jets 2 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 13.3 13.3 13.3 13.2 13.2 13.2 3.2 20.3 13.3 20.3 20.3	ú. ř ú	$\begin{array}{ccc} \textbf{1.35 TeV} & m[k] = m[k] \\ \textbf{1.35 TeV} & m[k]^2, 200 ~ GeV, rm(1^{4}~gen.~4) = m[2^{n4}~gen.~4) \\ m[k]^2, rm(1^{3}~j) < 5 ~ GeV \\ \textbf{1.60 TeV} & m[k^2]_1 < 0 ~ GeV \\ \textbf{1.60 TeV} & m[k^2]_1 < 0 ~ GeV \\ \textbf{1.7 TeV} & m[k^2]_1 < 0 ~ GeV \\ \textbf{1.7 TeV} & m[k^2]_1 < 0 ~ GeV \\ \textbf{2.0 TeV} \\ \textbf{2.0 TeV} \\ \textbf{3.7 TeV} & m[k^2]_1 < 500 ~ GeV \\ \textbf{1.8 TeV} & m[k^2]_1 < 500 ~ GeV \\ \textbf{3.7 TeV} & m[k^2]_1 < 500 ~ GeV \\ \textbf{1.8 TeV} & m[k^2]_1 < 500 ~ GeV \\ \textbf{3.7 TeV} & m[k^2]_1 < 500 ~ GeV \\ \textbf{3.8 TeV} & m[k^2]_1 < 550 ~ GeV, cr(NLSP] < 0.1 ~ mm, \mu < 0 \\ m[k^2]_1 > 680 ~ GeV, cr(NLSP] < 0.1 ~ mm, \mu > 0 \\ m[k^2]_1 > 1.8 ~ TeV & m[k^2]_1 > 430 ~ GeV \\ m[k^2]_1 > 430 ~ GeV \\ m[k^2]_1 > 430 ~ eV, rm(k^2] = m[0] = 1.5 ~ TeV \\ \end{array}$	1507.05625 ATLAS:CONF-2018-078 1604.07773 ATLAS:CONF-2018-078 ATLAS:CONF-2018-078 ATLAS:CONF-2018-037 ATLAS:CONF-2018-037 1607.05979 1606.00150 1507.05493 ATLAS:CONF-2018-096 1503.05493 ATLAS:CONF-2018-096 1503.03200 1502.01518			
3 rd gen <u>§</u> med.	$\underline{s}\underline{s}, \underline{s} \rightarrow b\overline{b} \overline{k}_{1}^{0}$ $\underline{s}\underline{s}, \underline{s} \rightarrow t \overline{k}_{1}^{0}$ $\underline{s}\underline{s}, \underline{s} \rightarrow b \overline{s} \overline{k}_{1}^{+}$	0 0-1 e.µ 0-1 e.µ	3 b 3 b 3 b	Yes Yes Yes	14.8 14.8 20.1	ik ik ik	1.69 TeV m(k ² ₁)=0 GeV 1.69 TeV m(k ² ₁)=0 GeV 1.37 TeV m(k ² ₁)=0 GeV	ATLAS-CONF-2016-052 ATLAS-CONF-2016-052 1407.0600			
3 ⁻⁴ gen. squarks direct production	$ \begin{split} & \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{c}_1^0 \\ & \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{c}_1^0 \\ & \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{c}_1^0 \\ & \tilde{c}_1 \tilde{c}_1, \tilde{c}_1 \rightarrow b \tilde{c}_1^0 \\ & \tilde{c}_1 \tilde{c}_1, \tilde{c}_1 \rightarrow c \tilde{c}_1^0 \\ & \tilde{c}_1 \tilde{c}_1, \tilde{c}_1 \rightarrow c \tilde{c}_1^0 \\ & \tilde{c}_2 \tilde{c}_1, \tilde{c}_1 \rightarrow \tilde{c}_1 + k \end{split} $	0 $2 e, \mu$ (SS) $0.2 e, \mu$ $0.2 e, \mu$ 0 $2 e, \mu (Z)$ $3 e, \mu (Z)$ $1 e, \mu$	2 b 1 b 1-2 b 0-2 jets/1-2 i mono-jet 1 b 1 b 6 jets + 2 b	Yes Yes 4 Yes 4 Yes Yes Yes Yes Yes	3.2 13.2 1.7/13.3 1.7/13.3 3.2 20.3 13.3 20.3	\$i 840 GeV \$i 325-685 GeV \$i17-170 GeV 205-685 GeV \$i17-170 GeV 205-685 GeV \$i160 - 198 GeV 205-880 GeV \$i160 - 198 GeV 205-800 GeV \$i170 - 190 GeV \$i20 - 200 GeV \$i20 - 200 GeV \$i20 - 200 GeV	$\begin{split} m[\tilde{k}_{1}^{0}] <& 100 GeV \\ m[\tilde{k}_{1}^{0}] <& 150 GeV, m(\tilde{k}_{1}^{0}] = m(\tilde{k}_{1}^{0}) + 100 GeV \\ m[\tilde{k}_{1}^{0}] &= 2m(\tilde{k}_{1}^{0}), m[\tilde{k}_{1}^{0}] = 55 GeV \\ m[\tilde{k}_{1}^{0}] =& 16 GeV \\ m[\tilde{k}_{1}^{0}] =& 150 GeV \end{split}$	1606.08772 ATLAS-CONF-2016.037 1209.2102, ATLAS-CONF-2016.077 1506.08016, ATLAS-CONF-2016-077 1604.07773 1403.5222 ATLAS-CONF-2016.038 1506.08816			
EW direct	$\begin{array}{l} \tilde{\ell}_{\perp,k} \tilde{\ell}_{\perp,k}, \tilde{\ell} \rightarrow \ell R_{1}^{O} \\ \tilde{k}_{\perp}^{*} \tilde{k}_{\perp}^{*}, \tilde{k}_{\perp}^{*} \rightarrow \ell \nu (\ell \eta) \\ \tilde{k}_{\perp}^{*} \tilde{k}_{\perp}^{*}, \tilde{k}_{\perp}^{*} \rightarrow \nu (\ell \eta) \\ \tilde{k}_{\perp}^{*} \tilde{k}_{\perp}^{O} \rightarrow \nu \tilde{k}_{\perp}^{*} \ell \ell \theta \rangle \\ \tilde{k}_{\perp}^{*} \tilde{k}_{\perp}^{O} \rightarrow \nu \tilde{k}_{\perp}^{*} \ell \theta \rangle \\ \tilde{k}_{\perp}^{*} \tilde{k}_{\perp}^{O} \rightarrow \nu \tilde{k}_{\perp}^{*} \tilde{k}_{\perp}^{*} \\ \tilde{k}_{\perp}^{*} \tilde{k}_{\perp}^{O} \rightarrow \nu \tilde{k}_{\perp}^{*} \tilde{k}_{\perp}^{*} \\ \tilde{k}_{\perp}^{*} \tilde{k}_{\perp}^{*} \rightarrow \nu \tilde{k}_{\perp}^{*} \tilde{k}_{\perp}^{*} \\ \tilde{k}_{\perp}^{*} \tilde{k}_{\perp}^{*} \rightarrow \nu \tilde{k}_{\perp}^{*} \tilde{k}_{\perp}^{*} \\ \tilde{GGM} (\text{nin OLSP}) \text{ weak prod.} \\ \end{array}$	2 e, μ 2 e, μ 2 τ 3 e, μ 2 · 3 e, μ 2 · 3 e, μ γγ e, μ, γ 4 e, μ 1 e, μ + γ 2 γ	0 - 0-2 jets 0-2 <i>b</i> 0 -	Yes Yes Yes Yes Yes Yes Yes Yes	20.3 13.3 14.8 13.3 20.3 20.3 20.3 20.3 20.3 20.3	ž 90-335 GeV š ^a 540 GeV š ^a 580 GeV š ^a 1.0 TeV š ^a 425 GeV š ^a 635 GeV š ^a 580 GeV š ^a 580 GeV š ^a 580 GeV š ^a 580 GeV	$\begin{split} m[\tilde{t}_{1}^{2}] = 0 \text{GeV} \\ m[\tilde{t}_{1}^{2}] = 0 \text{GeV} (m[\tilde{\ell}, \tilde{\gamma}] = 0 \text{GeV} (m[\tilde{\ell}, \tilde{\gamma}] + m[\tilde{\ell}_{1}^{2}]) \\ m[\tilde{\ell}_{1}^{2}] = 0 \text{GeV} (m[\tilde{\ell}, \tilde{\gamma}] = 0.5 [m[\tilde{\ell}_{1}^{2}] + m[\tilde{\ell}_{1}^{2}]) \\ m[\tilde{\ell}_{1}^{2}] = m[\tilde{\ell}_{1}^{2}], m[\tilde{\ell}_{1}^{2}], m[\tilde{\ell}_{1}^{2}] = 0.5 (\text{for excupled} \\ m[\tilde{\ell}_{1}^{2}] = m[\tilde{\ell}_{1}^{2}], m[\tilde{\ell}_{1}^{2}], m[\tilde{\ell}_{1}^{2}] = 0.5 (\text{descupled} \\ m[\tilde{\ell}_{1}^{2}] = m[\tilde{\ell}_{1}^{2}], m[\tilde{\ell}_{1}^{2}], m[\tilde{\ell}_{1}^{2}] = 0.5 (\text{descupled} \\ m[\tilde{\ell}_{1}^{2}] = m[\tilde{\ell}_{1}^{2}], m[\tilde{\ell}_{1}^{2}] = 0.5 (\text{descupled} \\ m[\tilde{\ell}_{1}^{2}] = m[\tilde{\ell}_{1}^{2}], m[\tilde{\ell}_{1}^{2}] = 0.5 (\text{m}[\tilde{\ell}_{2}^{2}] + m[\tilde{\ell}_{1}^{2}]) \\ \text{cr} < 1 \text{rm} \end{split}$	1403 5294 ATLAS-CONF-2018-098 ATLAS-CONF-2018-093 ATLAS-CONF-2018-098 1403-5294, 1402-7029 1501.07110 1405-5086 1507.06493 1507.06493			
Long-lived particles	$\begin{array}{l} \operatorname{Direct} \{\widehat{t}, \widehat{t}_{1}^{*} \operatorname{prod}_{*}, \operatorname{long-lived} \widehat{t}_{1}^{*} \\ \operatorname{Direct} \{\widehat{t}, \widehat{t}_{2}^{*} \operatorname{prod}_{*}, \operatorname{long-lived} \widehat{t}_{1}^{*} \\ \operatorname{Stable}_{*} \operatorname{stoped}_{*} \widehat{t}_{1}^{*} \\ \operatorname{Audron} \\ \operatorname{Stable}_{*} \widehat{t}_{1}^{*} \\ \operatorname{Audron} \\ \operatorname{MSB}_{*} \operatorname{stable}_{*} \widehat{t}_{*}^{*} \\ \operatorname{Audron} \\ \operatorname{GMSB}_{*} \operatorname{stable}_{*} \widehat{t}_{*}^{*} \\ \operatorname{Audron} \\ \operatorname{GMSB}_{*} \operatorname{stable}_{*} \widehat{t}_{*}^{*} \\ \operatorname{Audron} \\ \operatorname{GMSB}_{*} \operatorname{stable}_{*} \\ \operatorname{Audron} \\ \operatorname{GMSB}_{*} \operatorname{stable}_{*} \\ \operatorname{Audron} \\ \operatorname{GMSB}_{*} \operatorname{stable}_{*}^{*} \\ \operatorname{Audron} \\ \operatorname{GMSB}_{*} \\ \operatorname{Audron} \\ \operatorname{Audron} \\ \operatorname{GMSB}_{*} \\ \operatorname{Audron} \\ \operatorname{Audron} \\ \operatorname{GMSB}_{*} \\ \operatorname{Audron} \\$	$ \begin{array}{l} & \text{Disapp. trk} \\ & \text{dE/dx trk} \\ & 0 \\ & \text{trk} \\ & \text{dE/dx trk} \\ & \text{dE/dx trk} \\ & 2\gamma \\ & 2\gamma \\ & \text{displ. } re/e\mu/j \\ & \text{displ. } vtx + je \end{array} $	1 jet - 1-5 jets - - - - - - - - - - - - - - - - - - -	Yes Yes · · · Yes ·	20.3 18.4 27.9 3.2 19.1 20.3 20.3 20.3	x* 270 GeV x* 495 GeV x* 850 GeV x* 537 GeV x* 537 GeV x* 440 GeV x* 1.0 TeV x* 1.0 TeV	$\begin{split} m(\tilde{k}_{1}^{*}) &-r(\tilde{k}_{2}^{*}) - 160 \; MeV,\; r(\tilde{k}_{1}^{*}) - 0.2 \; n_{2} \\ m(\tilde{k}_{1}^{*}) - r(\tilde{k}_{2}^{*}) - 160 \; MeV,\; r(\tilde{k}_{1}^{*}) - 162 \; n_{3} \\ m(\tilde{k}_{1}^{*}) = 100 \; GeV,\; 10 \; \mu e \; r(\tilde{g}) < 1000 \; e \\ \hline 1.57 \; TeV \\ m(\tilde{k}_{1}^{*}) = 100 \; GeV,\; r > 10 \; re \\ 10 \; class(1-50) \\ 1 \; cer(\tilde{k}_{1}^{*}) < 50 \; R \; SPSB \; model \\ 7 \; < cr(\tilde{k}_{1}^{*}) < 480 \; mm,\; re(\tilde{g}) = 1.3 \; TeV \\ 8 \; < cr(\tilde{k}_{1}^{*}) < 480 \; mm,\; re(\tilde{g}) = 1.1 \; TeV \end{split}$	1310.3875 1506.06332 1310.5584 1606.05120 1604.04520 1411.5705 1409.5542 1504.05162 1504.05162			
ЧН	$\begin{array}{l} LFV p_{\mathcal{P}} \rightarrow v_r + X, v_r \rightarrow e \mu/e \tau/\rho \tau \\ Bilnear \ RPV \ CMSSM \\ \mathcal{K}_1^* \mathcal{K}_1^*, \mathcal{K}_1^* \rightarrow \mathcal{K}_2^* \mathcal{K}_2^* \mathcal{K}_2^* \rightarrow criv_e, e \rho v_i \mu \\ \mathcal{K}_1^* \mathcal{K}_1^*, \mathcal{K}_1^* \rightarrow WR_1^* \mathcal{K}_1^* \rightarrow criv_e, e r v_r \\ \mathcal{Z}_2^* \mathcal{Z}_3^* \mathcal{Z}_3^* \rightarrow \mathcal{H}_2^* \mathcal{K}_3^* \mathcal{L}_3^* \rightarrow \mathfrak{q} q q \\ \mathcal{Z}_2^* \mathcal{Z}_3^* \mathcal{Z}_3^* \mathcal{L}_3^* \mathcal{L}_3^* \rightarrow \mathfrak{q} q q \\ \mathcal{Z}_2^* \mathcal{Z}_3^* \mathcal{Z}_3^* \mathcal{L}_3^* \mathcal{L}_3^* \rightarrow \mathfrak{q} q \\ \mathcal{Z}_2^* \mathcal{Z}_3^* \mathcal{L}_3^* \mathcal{L}_3^* \rightarrow \mathfrak{h} e \\ \mathcal{L}_3^* \mathcal{L}_3^* \mathcal{L}_3^* \rightarrow \mathfrak{h} e \\ \mathcal{L}_3^* \mathcal{L}_3^* \mathcal{L}_3^* \rightarrow \mathfrak{h} e \\ \mathcal{L}_3^* \mathcal{L}_3^* \mathcal{L}_3^* \mathcal{L}_3^* \mathcal{L}_3^* \mathcal{L}_3^* \rightarrow \mathfrak{h} e \\ \mathcal{L}_3^* L$	$e\mu, e\tau, \mu\tau$ $2e, \mu$ (SS) $\mu\nu$ $4e, \mu$ $3e, \mu + \tau$ $0e^{4}$ $1e, \mu$ $1e, \mu$ $0e^{4}$ $2e, \mu$	- 0-3 h - 1-5 large- R je 8-10 jets/0-4 8-10 jets/0-4 2 jets + 2 h 2 h	· Yes Yes ts· ts· b· b· ·	3.2 20.3 13.3 20.3 14.8 14.8 14.8 14.8 14.8 15.4 20.3	φ. φ φ. φ φ. φ 1.14 \$\$\$^*\$ 450 GeV \$	1.9 TeV A ⁱ _{k11} =0.11, A ⁱ _{k12} tan ₂ tan ₂ =0.07 1.45 TeV m[k]=m[k], c _{1,k1} <free< td=""> 1.9 TeV m[k]²_{k1}>400GeV, A_{12k}<0 (k = 1, 2)</free<>	1607.08079 1404.2500 ATLAS-CONF-2018-075 1405.5086 ATLAS-CONF-2018-057 ATLAS-CONF-2018-057 ATLAS-CONF-2018-094 ATLAS-CONF-2018-094 ATLAS-CONF-2018-094 ATLAS-CONF-2018-094 ATLAS-CONF-2015-015			
Other	Scalar charm, ĩ→cℜ ₁	0	2 c	Yes	20.3	2 510 GeV	m(²⁰)<200 GeV	1501.01325			
	*Only a selection of the available mass limits on new 10 ⁻¹ 1 Mass scale [TeV]										

KMI2017, 05/01/2017

SUSY search results

Example: $g \sim /q \sim \text{search with jets} + E_T^{\text{miss}}$

- Event selection: require 2-6 jets and veto isolated leptons
 - Sensitive to g~ and q~ production
 - High priority in early Run2
- Total of 30 signal regions to cover various mass spectra
 - No significant excesses in any signal region overall
 - For small m(neutralino1)
 exclusion reach extended
 m(g~) < 1.4 TeV (Run1)
 → < 1.86 TeV (2015+16)
 - Check details in poster
 by Y. Sano (a Nagoya
 PhD student)

a

t~ search summary

- Search for top squark pair productions
 - Explored many channels with 2016 data

Developing dedicated searches for such compressed spectra
 → Check details in poster by K. Onogi (a Nagoya PhD student)

Conclusion

- The LHC is performing extremely well
- A broad range of LHC Run2 results using early 2016 dataset
 - Starting precise measurements of H(125) at 13 TeV
 - Concluding on the Standard Model ttH sensitivity
 - 13 TeV in Run2 brings significant increase in sensitivity, shaping the search program in 2015 and early 2016
 - The limits set significantly extend the Run1 results, thus further constraining various models. No significant excesses, though some ~3σ effects as expected. More data will tell which, if any, will remain
 - The search program is moving toward more challenging signatures and scenarios
- Expecting exciting future
 - New results with ~40 fb⁻¹ in early spring of 2017
 - Data analysed so far: a small fraction of total Run2 (100 fb⁻¹)

Backup slides

pMSSM scans

- LHC: simplified model \rightarrow BR=1 (even for cascade decays)
- setting limits on various pMSSM using all ATLAS search pMSSM: B-like LSP
 - Good coverage pMSSM: $\tilde{\chi}_{1}^{0}$ LSP m(q̃) [GeV] 0005 √s=8 TeV, 20.3 fb⁻¹ 9.0 Models Excluded √s=8 TeV, 20.3 fb⁻¹ m(χ̃₄)=0 GeV [1405.7875] 0.8 m(χ̃)=0 GeV [1405.7875] of pMSSM, 0.6 dependence on 2000 2000 Eraction of P LSP nature 0.4 (via signatures) 1000 0.2 1000 1000 2000 500 1500 500 1000 2000 m(g) [GeV] 1500
 - Similar scan will be repeated with results using the Run2 full dataset

