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Challenges for ML on ATLAS? 2
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Analysis Challenges
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Trigger Challenges

My obnoxious extrapolation, Moriond 2018
Don’t take too seriously

• Successfully physics program at 
the LHC requires overcoming 
major hardware, computing, 
and analysis challenges!

• How will the increasing power 
of  ML play a role?

https://indico.cern.ch/event/754731/contributions/3127500/subcontributions/262952/attachments/1802165/2939783/LHCC_20100225_Costanzo.pdf
http://cdsweb.cern.ch/record/2285584


The ATLAS Experiment

Size:
46 m long, 
25 m high, 
25 m wide

Data:
~300 MB / sec
~3000  TB / year

Weight:
7000 tons

3

~108 detector channels
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Reconstructing Particles 5

Calorimeter:
Stops particle and
destructively measure
energy / direction

Tracking detector:
Typically Si-pixel detector
Non-destructive space-point
measurement

• Particle identification = 
Classification 

• Energy estimation = 
Inference, regression

p(electron | data)

p(Eelectron

true

| electron data)



Data Analysis Pipeline 6

Experiment
Data Collection

Simulation of 
physics + detector

Generative Model

Reconstruction
Raw data to final 

state paticles

Cluster energy depositions
Classify clusters as particles
Infer / regress properties

Event 
Reconstruction 
and Selection

Infer properties of collision
Classification of interesting collisions

Hypothesis 
testing / 

Measurement

Latent parameter
estimation

Low-latency decision making



From Theory to Experiment… and Back 7

Detector data
&

Simulation

Reconstruction of 
particles

Event 
Reconstruction 
and Selection

Hypothesis 
testing / 

Measurement

O(10) particles O(100) particles O(108) detector elementsParameters 𝜃

Slide credit: K. Cranmer



ML Across the ATLAS Analysis Pipeline

• Reconstruction - discrimination / regression problems, 
leading to fastest uptake of  new ideas

• Jets: Tagging, Calibration, Decorrelation
• Missing Energy – Pileup Subtraction
• Jet Flavour Tagging
• Tau Particle ID
• Pixel Clustering for Tracking

• Simulation – problems of  density estimation and sampling
– Fast Calorimeter Simulation

• Analysis - largely well known ML methods for signal vs 
background discrimination and event reconstruction
– Very impactful, but not going to talk about this much

• ML applications growing more sophisticated
– Classification à Density estimation à Differentiable Programs

8
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How can existing ML 
help us do better in 

tackling known 
challenges

How can existing ML 
allows us to  approach 

new challenges

How can we design ML 
systems to our needs



Looming Gap in Theory vs Practice 
• Large difference between what is done in phenomenology papers 

and on the experiment (at least what is public)

• Why????
– Real detector models have MUCH more complex noise than simplified 

simulation
• Method performance doesn’t necessarily transfer
• Even the ones that transfer can be hard to tune

– Calibration – even our best simulations for training are not perfect
• After training the algorithm, we still have to calibrate!

– Information disconnect
• Model expertise may be outside experiment
• Different people build and calibrate algorithm within ATLAS

– Experiment computational resources may not be well suited to ML
• Moreover, full data re-processing alone can take months

– Resistance to change

10



Classification and Regression in Reconstruction
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Jets at the LHC 12

• Jets are formed by clustering energy depositions in calorimeter with 
the anti-kT algorithm

• Jet identification = Classification:  𝑝 𝑝𝑎𝑟𝑒𝑛𝑡 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑗𝑒𝑡 𝑐𝑙𝑢𝑠𝑡𝑒𝑟)

• Energy estimation = Inference, regression: 𝑝 𝐸0123
430 𝑗𝑒𝑡 𝑐𝑙𝑢𝑠𝑡𝑒𝑟)



Canonical Discrimination Problem: Jet Identification 13

Image Credit: arXiv:1909.12285

https://arxiv.org/pdf/1909.12285.pdf


Combining Substructure Variables

• Wide array of  physics insight has gone into 
developing jet substructure observables

• Direct application of  ML for combining power of  
multiple partially correlated substructure features

• First calibrations look quite reasonable! 

14
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Jets as Images 15

• A jet induces a distribution of  energy over 𝜂 − 𝜙
– Essentially how a jet is seen by calorimeters

• Jet-image – fixed size 2D representation of  the 
jet as a distribution of  energy

Jet

Jet Image



Jet Images 16

Unrolled slice of detector

Calorimeter towers as pixels
Energy depositions as intensity

Image Credit: B. Nachman

https://indico.cern.ch/event/567550/contributions/2656471/


Jet Images 17

Average of large number of Jet Images

W-jets

QCD-jets

Image Credit: B. Nachman

https://indico.cern.ch/event/567550/contributions/2656471/


CNNs + Jet Images 18
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Boosted Boson Type Tagging

Jet ETmiss

SLAC, Stanford University

March 26, 2014

Benjamin Nachman and Ariel Schartzman

B. Nachman (SLAC) Boosted Boson Type Tagging March 26, 2014 1 / 21

Boosted Boson Type Tagging

Jet ETmiss

SLAC, Stanford University

March 26, 2014

Benjamin Nachman and Ariel Schartzman

B. Nachman (SLAC) Boosted Boson Type Tagging March 26, 2014 1 / 21

Even more non-linearity: Going Deep

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully  
Connected 
ReLU Unit

ReLU Dropout ReLU Dropout
Local 

Response 
Normalization

W’→ WZ event

Convolutions
Convolved  

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

Repeat

Apply deep learning techniques on jet images! [3]

convolutional nets are a standard image 
processing technique; also consider maxout

arXiv:1407.5675
arXiv:1511.05190FC

+
logistic

• CNN’s applied to Jet images 
can lead to large performance 
gains

• More on Classification in 
T. Plehn’s talk

https://arxiv.org/abs/1407.5675
https://arxiv.org/abs/1511.05190


Jet Images on ATLAS: Quarks vs Gluons 19

ATL-PHYS-PUB-2017-017

Note: Other experimental results on CMS with ImageTop, a 
boosted top tagger based on images CMS-PAS-JME-18-002

https://cds.cern.ch/record/2275641?ln=en
https://cds.cern.ch/record/2683870?ln=en


Calo-Images for Missing Energy Pileup Removal

• Input: images of  calorimeter 
clusters and tracks

• Output: NN regress to predict 
hard scatter energy in each 
calorimeter tower
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• Gains in resolution
– NNN doesn’t learn accurate cell by cell predictions
– Considering new ways to define loss

https://cds.cern.ch/record/2684070


Reconstructing Bottom Quark Jets 21
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Bottom Quark Jet Identification

• Goal: Discriminate b-jets from non-b-jets

• Track Impact Parameter based taggers: 
𝑝 𝑗𝑒𝑡 𝑓𝑙𝑎𝑣𝑜𝑟 𝑡𝑟𝑎𝑐𝑘𝑠 𝑖𝑛 𝑗𝑒𝑡)
– Dimensionality too high for histogram density estimation
– Often make naïve Bayes assumption that tracks independent! 

22

b-jets
Light-flavor jets



Jets as Sequences

• Jets are a grouping of  a variable number of  particles

• With physically motivated ordering: jet as a sequence

23

{ p1 ,    p2 ,     p3 ,    p4 ,     p5 ,    p6 ,     p7 ,    p8 }     

Jet

Jet sequence



Recurrent Neural Networks 24

Image credit: F. Fleuret

https://fleuret.org/ee559/


Recurrent Neural Networks 25

Image credit: F. Fleuret

https://fleuret.org/ee559/


Recurrent Neural Networks 26

Image credit: F. Fleuret

https://fleuret.org/ee559/


Recurrent Neural Networks 27

The movie was great

[0.98] à Positive Sentiment

Sentiment
Analysis

Image credit: F. Fleuret

https://fleuret.org/ee559/


• Gating:
– network can grow very deep, 

in time à vanishing gradients. 
– Critical component: add pass-through (additive paths) 

so recurrent state does not go repeatedly through 
squashing non-linearity. 

• LSTM: 
– Add internal state separate 

from output state
– Add input, output, and 

forget gating

Long Short Term Memory (LSTM) 28
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Credit: Gilles Louppe

https://glouppe.github.io/info8010-deep-learning/pdf/lec5.pdf


Jets and Sequence Processing 29

ATL-PHYS-PUB-2017-003

https://cds.cern.ch/record/2255226


RNN b-tagging 30

ATL-PHYS-PUB-2017-003
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• Order tracks by impact parameter

• RNN can learn inter-track dependencies

RNN
Naïve Bayes

https://cds.cern.ch/record/2255226


Combining With Other Algorithms 31

1/(false-positive rate)  at fixed true-positive rate vs jet pTATLAS-PHY-PLOTS-FTAG-2019-005

http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2019-005/


Calibration 32
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Real World Impact: Dijet Resonances 33
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Tau RNN 34[Images from Mariel Pettee] 
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Tau RNN 35[Images from Mariel Pettee] 

Trigger ApplicationATL-PHYS-PUB-2019-033

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TauTriggerPublicResults
http://cdsweb.cern.ch/record/2688062


Density Estimation and Generative Modeling

36



Why Generative Modeling

• Discriminative models: f 𝑥 ≈ >𝑦 = 𝐸A(C|E)[𝑦]

• How do we model uncertainty on predictions, i.e. 
learn a posterior on likelihood?

• Generative models aim to estimate density p(x) or 
conditional p(x|y)
– Explicitly: can compute the value p(H)
– Implicitly: can draw samples from p(H)

–More on Generative Models in A. Butter’s Talk

37



Fast Simulation

• Increased pileup at HL-LHC will push boundaries of  our 
computational capabilities for simulation

38

• Full Simulation
– Accurate but costly to sample

• Fast Simulation
– Sample from parametric average 

shower model
– Doesn’t account for correlations in 

shower shape fluctuations

Image: arXiv:1701.05927



Fast Simulation

• Increased pileup at HL-LHC will push boundaries of  our 
computational capabilities for simulation

39

• Full Simulation
– Accurate but costly to sample

• Fast Simulation
– Sample from parametric average 

shower model

• New approaches:
– Correct average: Model correlated fluctuations on top of  average
– Full ML approach: Learn generative mode of  distribution of  

showers, p(x), and produce samples



Correcting the Average 40

• Method: Fit parametric approximation to correlated noise 
distribution

• Sklar’s Theorem: given a random vector (X1 , … , Xn), the 
joint cumulative distribution function

𝐻 𝑥J,… , 𝑥M = 𝑃 𝑋J ≤ 𝑥J,… , 𝑋J ≤ 𝑥J

can be expressed using marginals 𝐹R 𝑥R = 𝑃(𝑋J ≤ 𝑥J) as
𝐻 𝑥J,… , 𝑥M = 𝐶(𝐹J 𝑥J ,…, 𝐹M 𝑥M )

where C(H) is the copula



Correcting the Average 41

• Method: Fit parametric approximation to correlated noise 
distribution with a Gaussian Copula

Gaussian Copula

Gaussian Copula density

1. CDF transform inputs xi to uniform ui

2. Fit copula to sample of  correlated uniform variables
3. Sample Copula to get ui and invert CDF to get xi



Correcting the Average with Copula 42

ATLAS-PHYS-PLOTS-SIM-2019-009

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2019-009/


Deep Generative Models 43
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arXiv:1406.2661
arXiv:1312.6114
arXiv:1401.4082

arXiv:1410.8516
arXiv:1505.05770

https://github.com/Atcold/pytorch-Deep-Learning-Minicourse/blob/master/slides/05%20-%20Generative%20models.pdf


Generative Adversarial Networks (GAN) [arXiv:1406.2661] 44

Generator
CNN

Discriminator
CNN

Random
Noise

“Real” data

Real or Fake?

Images: arXiv:1710.10196

• Generator produces images from random noise and tries 
to trick discriminator into thinking they are real

• Classifier tries to tell the difference between real and fake 
images  



GAN Loss and Training

• Two-player minimax game between Generator (G) and 
Discriminator (D) networks

• Training involves carful and often unstable iteration between 
updating G parameters (𝜃) and D parameters (𝜓)

• If  perfectly trained, generator converges to implicit model of  data 
density: G(z) = x ~ pdata(x)

45
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GANs for Calorimeter Energy Depositions 46
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Making use of  Generative Modeling Tools
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Adversarial Learning for Enforcing Invariance

• With flexibility come complexity: 
– Hard to control how models learn / utilize information
– Potentially unwanted sensitivity to poorly modeled 

aspects of  simulation
– Potentially unwanted sculpting of  key physics 

distributions like mass

• Idea: Augment training of  classifier to enforce 
invariance to changes in a variable Z (nuisance 
parameter for systematic uncertainty, kinematic 
variables, etc.)
– Several ways to do this, see D. Shih’s Talk

48



Adversarial Networks

• Classifier built to solve problem at hand

49arXiv:1611.01046 

https://arxiv.org/abs/1611.01046


Adversarial Networks 50

• Loss that encodes performance of  a classifier and adversary

• Classifier penalized when adversary does well at predicting Z

arXiv:1611.01046 

https://arxiv.org/abs/1611.01046


Adversarial Networks

• Hyper-parameter l controls trade-off
– Large l enforces f(…) to be pivotal, e.g. robust to nuisance
– Small l allows f(…) to be more optimal without Z variation

51
G. Louppe, M. K., K. Cranmer, 
arXiv:1611.01046 



Learning to Pivot: Toy Example

• 2D example

52arXiv:1611.01046 

With Adversary

Without Adversary

https://arxiv.org/abs/1611.01046


Learning to Pivot: Physics Example 53

Optimal tradeoff of 
performance vs. robustness

Non-Adversarial training

• l=0, Z=0
– Standard training with no 

systematics during training, 
evaluate systematics after 
training

• l=0
– Training samples include 

events with systematic 
variations, but no adversary 
used

• l=10
– Trading accuracy for 

robustness results in net 
gain in terms of  statistical 
significance

[AMS = Estimate of statistical significance including systematic uncertainty]

W-jets vs. QCD-jets
Z = noise level from pileup

arXiv:1611.01046 

https://arxiv.org/abs/1611.01046


Decorrelating Variables

• Same adversarial setup can decorrelate a classifier 
from a chosen kinematic variable [arXiv:1703.03507]

• Example: decorrelate classifier from jet mass, so as 
not to sculpt jet mass distribution with classifier cut

54

ATL-PHYS-PUB-2018-014

W-jets vs. QCD Jets

Better

https://arxiv.org/abs/1703.03507
https://cds.cern.ch/record/2630973


Decorrelating Variables

• Same adversarial setup can decorrelate a classifier 
from a chosen kinematic variable [arXiv:1703.03507]

• Example: decorrelate classifier from jet mass, so as 
not to sculpt jet mass distribution with classifier cut
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Non-ATLAS, but related, 
use of  Generative Modeling Tools

56



Black Box Optimization 57

Stochastic
Simulator
𝐹 𝑥; 𝜓

x y arg min
�
𝔼[ℛ 𝑦 ]

Observations

Parameters 𝜓

Inputs

Objective

• Goal: Optimize simulator parameters to minimize objective

Under Review
S. Shirbikov, V. Belavin, M. K. , 
A. Baydin, A. Ustyuzhanin



Black Box Optimization

• Goal: Optimize simulator parameters to minimize objective
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Stochastic
Simulator
𝐹 𝑥; 𝜓

x y arg min
�
𝔼[ℛ 𝑦 ]

Observations

Parameters 𝜓

Inputs

Objective

𝝁

Under Review
S. Shirbikov, V. Belavin, M. K. , 
A. Baydin, A. Ustyuzhanin



Black Box Optimization

• Goal: Optimize simulator parameters to minimize objective

• Can we approximate the simulator directly?
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Stochastic
Simulator
𝐹 𝑥; 𝜓

x y arg min
�
𝔼[ℛ 𝑦 ]

Observations

Parameters 𝜓

Inputs

Objective

Under Review
S. Shirbikov, V. Belavin, M. K. , 
A. Baydin, A. Ustyuzhanin

𝝁



Differentiable Surrogates

• Train parameterized generative surrogate model S, i.e. 
GAN or flow, to approximate 𝐹 𝑥; 𝜓
– Noise input to surrogate can account for stochastic nature of  F

60

Stochastic
Simulator
𝐹 𝑥; 𝜓

x y arg min
�
𝔼[ℛ 𝑦 ]

Inputs Observations

Parameters 𝜓

Surrogate
>𝑦 = 𝑆z(𝑧, 𝑥; 𝜓)

arg min
z
ℒ[𝑦, >𝑦]

z

Random Noise

>𝑦

Surrogate Loss

Objective

Under Review
S. Shirbikov, V. Belavin, M. K. , 
A. Baydin, A. Ustyuzhanin



Differentiable Surrogates

• Surrogate samples >𝑦 = 𝑆z(𝑧, 𝑥; 𝜓) are the output of  a NN
à 𝑆z 𝑧, 𝑥; 𝜓 is a continuous function of  its inputs
à Can differentiate the samples w.r.t. the parameters!
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Stochastic
Simulator
𝐹 𝑥; 𝜓

x y arg min
�
𝔼[ℛ 𝑦 ]

Inputs Observations

Parameters 𝜓

Surrogate
>𝑦 = 𝑆z(𝑧, 𝑥; 𝜓)
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z
ℒ[𝑦, >𝑦]
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Random Noise
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Objective

Under Review
S. Shirbikov, V. Belavin, M. K. , 
A. Baydin, A. Ustyuzhanin



Differentiable Surrogates

• Optimize objective with gradient 
descent using trained surrogate to 
produce differentiable samples
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Stochastic
Simulator
𝐹 𝑥; 𝜓

x y
Inputs Observations

Parameters 𝜓

z

Random Noise

>𝑦

Surrogate objective

∇� 𝔼[ℛ >𝑦 ]

arg min
�
𝔼[ℛ >𝑦 ]

Surrogate
>𝑦 = 𝑆z(𝑧, 𝑥; 𝜓)

=
1
𝑁j

RkJ

�

ℛ 𝑆z(𝑧R, 𝑥R ; 𝜓)

Under Review
S. Shirbikov, V. Belavin, M. K. , 
A. Baydin, A. Ustyuzhanin



Optimization on Toy Examples 63

Rosenbrock functionThree-Hump Camel function

100 Dim parameter space projected on 10 Dim submanifold

Under Review
S. Shirbikov, V. Belavin, M. K. , 
A. Baydin, A. Ustyuzhanin



Optimization In Physics Example 64

Before

After

Under Review
S. Shirbikov, V. Belavin, M. K. , 
A. Baydin, A. Ustyuzhanin



Conclusion
• Analysis pipeline is grounded in our detail physics domain 

knowledge

• Maintain our physics knowledge embedded in this pipeline while 
using ML to help solve some of  the intractable challenges we face 
on ATLAS

• ML methods have shown strong performance improvements in 
reconstruction and analysis methods

• Techniques to deal with key challenges such as simulation 
computational cost and systematic uncertainty mitigation are 
under study

65

How can existing ML 
help us do better in 

tackling known 
challenges

How can existing ML 
allows us to  approach 

new challenges

How can we design ML 
systems to our needs
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