

Qi-Dong Zhou (IAR/KMI, Nagoya Univ.) -> Shandong Univ. from 2023 May

Mar. 29 - 30, 2023, Nagoya University **B1** Heavy Flavor and Dark Matter Joint Unit Symposium

Status and prospect for R(D) and R(D*) at Belle II

Semi-tauonic B decay: $B \rightarrow D^{(*)}\tau v$

 $\left|\overline{B}^{0} \to D^{*+}[W^{-} \to \tau^{-}\overline{v_{\tau}}]\right|$

- Universality of the lepton coupling to the W gauge boson (Symmetry) Lepton Flavor Universality (LFU) is fundamental theory of Standard Model (SM)
- $B \rightarrow D^{(*)}\tau v$ sensitive to New physics (NP) because the massive 3rd generation b quark and τ lepton are involved
 - Flavor-dependent coupling to fermions could violates LFU

R(D) and $R(D^*)$ anomaly

- QED corrections depend on lepton velocity (τ vs. (e, μ))

Experiment	Tag method	τ decay	Correlation(stat/syst/total)	R(D)	R(D*)
Babar '12	Hadronic	lvv	-0.45/-0.07/-0.27	$0.440 \pm 0.058 \pm 0.042$	$0.332 \pm 0.024 \pm 0.018$
Belle '15	Hadronic	lvv	-0.56/-0.11/-0.49	$0.375 \pm 0.064 \pm 0.026$	0.293 ± 0.038 ± 0.015
LHCb '15	_	$\mu \nu \nu$		—	$0.336 \pm 0.027 \pm 0.030$
Belle '16	Semileptonic	lvv		-	$0.302 \pm 0.030 \pm 0.011$
Belle '17	Hadronic	πν,ρν		-	$0.270 \pm 0.035 \pm 0.028_{-0.025}$
LHCb '18	_	πππν		-	$0.283 \pm 0.019 \pm 0.029$
Belle '20	semileptonic	lvv	-0.53/-0.51/-0.51	0.307 ± 0.037 ± 0.016	$0.283 \pm 0.018 \pm 0.014$
LHCb '22	_	$\mu \nu \nu$	-0.49/ /-0.43	$0.441 \pm 0.060 \pm 0.066$	0.281 ± 0.018 ± 0.024
LHCb '23	_	πππν		-	0.257 ± 0.012 ± 0.018
Average	_	_	-0.37	0.356 ± 0.029	0.284 ± 0.013
SM				0.298 ± 0.004	0.254 ± 0.005

Ratio of branch fractions cancel out most of the $\frac{Br(\bar{B}^0 \to D^{(*)+}\tau^- \bar{\nu}_{\tau})}{Br(\bar{B}^0 \to D^{(*)+}\ell^- \bar{\nu}_{\ell})} \quad \text{uncertainties on } |V_{cb}|, \text{ form}$ factors and the experimental systematics

Charged lepton mass changes kinematics and modifies form factors in the hadronization

R(D) and $R(D^*)$ anomaly

	Correlation	R(D)	R(D*)
Average	-0.37	0.358 ± 0.029	0.284 ± 0.013
SM		0.298 ± 0.004	0.254 ± 0.005

 $3.8\sigma \longrightarrow 3.1\sigma \longrightarrow 3.3\sigma \longrightarrow 3.2\sigma \longrightarrow 3.2\sigma$ LHCb18 Belle19 2021 LHCb22 LHCb23

New physics scenarios

In general, there are three typical candidates to explain the deviations observed in $R(D^{(*)})$

- Heavy vector bosons
 - Constrained from $W' \rightarrow \tau v$ and $Z' \rightarrow \tau \tau$ search
- Charged Higgs

 - Constrained from $B_c \rightarrow \tau v$ and $H^{\pm} \rightarrow \tau v$, still allowed • Previously, it was rejected by $B_c \rightarrow \tau v$ measurement, however, recovered by recalculating the *Bc* lifetime. arxiv:2201.06565
- Leptoquark
 - $gg \rightarrow LQ LQ^*$, still broad parameter regions are allowed

R(D) and $R(D^*)$ experiments

- Experiments at *B* factory
 - e+e-→ γ (4S) →BB :

Data set for R(D*) measurement at Belle II

• World's highest instantaneous luminosity: $L = 4.7 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

KEKB record: 2.1 x 10³⁴ cm⁻² s⁻¹

- Belle II data taking efficiency ~90%
- 424 fb⁻¹ until Long Shutdown (LS) 1, ~363 fb⁻¹ on γ (4S)
 - Belle: 1 ab⁻¹
- First R(D*) measurement at Belle II using 189 fb⁻¹ data-set targeting the end of spring 2023
 - K. Kojima, et al., Nagoya-KEK group

Tagging methods

- B tagging is necessary to measure $B \rightarrow D^* \tau v$, $B \rightarrow D^* l v$ ($\nu \ge 2$) simultaneously
- Hadronic tag
 - Exclusive tag
 - Fully reconstruct $B \rightarrow D^{(*)}(J/\psi/\Lambda)X$
 - Tagging efficiency 0.2~0.4%
 - less background
 - Inclusive tag
 - Reconstruct tag B with all particles except signal B
 - Higher efficiency than exclusive tag
 - Low purity, need clean signal-side final state

- Semileptonic tag
 - Reconstruct $B \rightarrow D^{(*)} l v$

- <u>Hadronic tag</u>
 - Exclusive tag
 - Fully reconstruct $B \rightarrow D^{(*)}(J/\psi/\Lambda)X$
 - Tagging efficiency 0.2~0.4%
 - less background

- Fully reconstruct one of the B mesons (B tag), possible to measure momentum of other B meson (B signal)
- Indirectly measure missing momentum of neutrinos in signal B decays
- $M^2_{\text{miss}} = (p_{\text{beam}} p_B_{\text{tag}} p_D(*) p_i)^2$

• E_{ECL} unassigned neutral energy in the calorimeter $E_{ECL} = \sum_{i}^{\gamma} E_{i}^{\gamma}$ yields determination 9

Hadronic tag reconstruction at Belle II

- Hadronic tagging reconstruction : Full Event Interpretation (FEI) trained 200 Boost Decision Tree (BDT) to reconstruct ~100 decay channels, ~10,000 *B* decay chains

arXiv:2008.06096

D^* decays	D decays	• Reconstruct B-
	$D^0 \rightarrow K^- \pi^+ \pi^0$	same selectior
	$D^0 \to K^- \pi^+ \pi^- \pi^+$	• D meson recor
	$D^0 \to K^0_S \pi^+ \pi^- \pi^0$ $D^0 \to K^- \pi^+$	• 8 D ⁰ modes
$D^{*+} \to D^0 \pi^+$	$D^0 \rightarrow K^0_S \pi^+ \pi^-$	• 4 D+ modes
	$D^0 \to K^0_S \pi^0$ $D^0 \to K^- K^+$	• D* meson reco
	$D^{0} \rightarrow \pi^{+}\pi^{-}$	momentum π +
	$D^+ \to K^- \pi^+ \pi^+$	$\bullet D^{*+} \to D0\pi + //$
$D^{*+} \to D^+ \pi^0$	$D^+ \to K^0_S \pi^+$	$\bullet D^{*0} \rightarrow D^{0} \pi^{0}$
	$D^+ \to K^- K^+ \pi^+$ $D^+ \to K^0 K^+$	
	$\frac{D \to K_S \Lambda}{D^0 \to K^ + -0}$	• τ lepton recons
	$D^{\circ} \rightarrow K^{-} \pi^{+} \pi^{\circ}$ $D^{0} \rightarrow K^{-} \pi^{+} \pi^{-} \pi^{+}$	 Both neutral ar
	$D^0 \rightarrow K^0_S \pi^+ \pi^- \pi^0$	reconstruct wi
$D^{*0} \to D^0 \pi^0$	$D^0 \rightarrow K^- \pi^+$ $D^0 \rightarrow K^0 \pi^+ \pi^-$	
	$D^* \to K^*_S \pi^+ \pi^-$ $D^0 \to K^0_S \pi^0$	
	$D^0 \to K^- K^+$	
	$D^0 \to \pi^+ \pi^-$	

Signal side reconstruction

$$B \rightarrow D^* \tau v$$
 and $B \rightarrow D^* l v$ with ons

construct with K^{\pm} , π^{\pm} , K_s , π^0

- es (Br ~36%)
- es (Br ~12.3%)
- construct with D+/D⁰ and low π^+/π^0
- $+/D+\pi^0$ (Br ~98%) (Br ~65%)
- onstruct with l (e, μ) $\bar{\nu}\nu$
- and charged B[±]/B⁰ mesons
- with D^{*+}/D^{*0} and $\tau/l = (e, \mu)$

Missing energy

Improvement of reconstruction at Belle II

- Improve the reconstruction methodology at Belle II
 - Keep reasonably large reconstruction candidates
 - Found the maximum of FOM $N_{signal} / \sqrt{N_{signal} + N_{background}}$, by scanning the optimal selections
 - Improve 35% of FOM vs. Belle '15 hadronic tag $R(D^{(*)})$ analysis

• Fraction of survived B candidates in each category after event selections are estimated based on Belle II MC simulation

B condidates	$B \rightarrow D^* \tau \nu$	$B \rightarrow D * l \nu$	Background Truth $D^{(*)}$ $B \rightarrow D^{**} l\nu, B \rightarrow D^{(*)} X, B^0 <-> B^{\pm}, \dots$	Background Fake D ^(*)
B 0	2.7%	65.5%	12.5%	19.2%
B±	1.7%	34.7%	5.9%	57.8%

Dominant backgrounds

Calibration of fake D^* background on ΔM_{D^*} sideband

Estimate the most dominate background (fake D^*) using ΔM_{D^*} sideband • Fit ΔM_{D^*} distribution at sideband, threshold or Chebychev functions

- Obtain a calibration factor

Fitting methodology and variables • Extracting $B \rightarrow D^* \tau v$, $B \rightarrow D^* l v$ yields by a two-dimensional simultaneously fit

- - $M^2_{\text{miss}} = (p_{\text{beam}} p_{B_{\text{tag}}} p_{D(*)} p_{0})^2$

Fit configuration

• PDFs in two dimensions with uniform 24 M²_{miss} bins and 20 E_{ECL} bins after kernel density estimation • $R(D^*)$ obtained by simultaneous fits among three D^* modes

Belle II R(D^{*}) sensitivity at 189 fb⁻¹ • Producing Asimov MC data set with 189 fb⁻¹ based on PDF where $R(D^*) =$ 0.254 (SM expectation) • The fit returns $R(D^*) = 0.254$, statistical uncertainty is +17/-16% at 189 fb⁻¹

• Belle '15 statistical uncertainty is $13\% (15\%@R(D^*) = 0.254)$

Preliminary systematic uncertainties

 Each source of the uncertainty change fitted R(D*) value

Source

Statistical uncertainty

MC statistics

 $B \rightarrow D^{**}lv$ branching ratios

Currently, finalize the systematics uncertainty
 Especially, checking the B→D**lv modeling

• Each source of the uncertainty changes the PDF shape, consequently modify the

Uncertainty				
+0.043	+17%			
-0.040	-16%			
+0.010	+4.1%			
-0.007	-2.7%			
+0.012	+2.7%			
-0.010	-1.9%			

Statistical uncertainty dominated

Expected sensitivity of R(D*) at Belle II

The Belle II Physics Book, PTEP 2019, 123C01

arXiv:2207.06307

Data sample in ab^{-1}

Others R(D) and R(D*) measurements at Belle II

- <u>R(D) and R(D*) measurements with semileptonic tag</u>
 - Reconstruct $B \rightarrow D^{(*)}lv$ with semileptonic FEI
 - Tagging efficiency ~0.5%
 - More background
 - Sensitivity study been done with clean D* mode
 - A publication with 363 fb⁻¹ data targeting this summer
- $R(D^*)$ vs $P_{\tau}(D^*)$ measurements with hadronic FEI tag
 - Hadronic 1-prong τ decays
 - Sensitivity study of R(D*) been done with clean D* mode
 - A publication with 363 fb⁻¹ data targeting this winter

Variables for testing new physics

T. Kitahara @ 4th KMI school

		Spin	Charge	Operators	R_D	R_{D^*}	LHC	Flavor
	H^{\pm}	0	$({f 1},{f 2},{}^1\!/\!{}_2)$	O_{S_L}	~	~	b au u	$B_c \rightarrow \tau \nu, F_L^{D^*}, P_{\tau}^D, M_W$
LQ	\mathbf{S}_1	0	$(ar{3},1,{}^{1}\!/\!{}^{3})$	O_{V_L},O_{S_L},O_T	\checkmark	\checkmark	au au	$\Delta M_s, P^D_\tau, B\to K^{(*)}\nu\nu$
LQ	$ m R_{2}^{(2/3)}$	0	$({f 3},{f 2},{7/\!6})$	$O_{S_L},O_T,(O_{V_R})$	~	\checkmark	$b \tau \nu, \tau \tau$	$R_{\Upsilon(nS)},P_{ au}^{D^*},M_W$
LQ	U_1	1	$({f 3},{f 1},{f 2}/{f 3})$	O_{V_L},O_{S_R}	\checkmark	\checkmark	$b \tau \nu, \tau \tau$	$R_{K^{(*)}}, R_{\Upsilon(nS)}, B_s \rightarrow \tau \tau$
LQ	${ m V}_{2}^{(1/3)}$	1	$(ar{3}, 2, {}^{5}\!/\!\!6)$	O_{S_R}	\checkmark	2σ	au au	$B_s \to \tau \tau, \ M_W$

[lguro, TK, Watanabe, 2210.10751]

 $\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{\rm hel}} = \frac{3}{4} (2F_L^{D^*}\cos^2\theta_{\rm hel} + (1 - F_L^{D^*})\sin^2\theta_{\rm hel})$

$$F_L^{D^*} = \frac{\Gamma(D_L^*)}{\Gamma(D_L^*) + \Gamma(D_T^*)}$$

- Belle measured the D^{*-} polarization in the decay of $B \rightarrow D^* \tau v$, with inclusive tagging based on full Belle data-set (772 M BBbar)
- Result only published on arXiv, NOT to a journal paper

 $F_L^{D^*} = 0.60 \pm 0.08 (\text{stat}) \pm 0.04 (\text{sys})$

- Belle II 363 fb-1 data, will have sensitivity for measurement of $F_L^{D^*}$
- Low momentum of charged pion efficiency on forward and \bullet backward side is a challenge point.

Measurement of $R_D^{(*)}(q^2)$

$$R_{D^*}(q^2) \equiv \frac{d\mathcal{B}(\bar{B} \to D^*\tau\bar{\nu})/dq^2}{d\mathcal{B}(\bar{B} \to D^*\ell\bar{\nu})/dq^2} \left(1 - \frac{m_\tau^2}{q^2}\right)^{-2}$$

- q² specific systematic analysis
 - Cancel the uncertainties both from experimental and theoretical side.
- Has not been measured yet
- Already have sensitivity to rejecting some of the NP, with 363 fb⁻¹

PHYSICAL REVIEW D 91, 114028 (2015)

Summary and prospects • $R(D^*)$ shows 3.2 σ deviation between experimental average value and standard

model prediction

Hint of Lepton Flavor Universality Violation

- •Measurement of R(D*) with hadronic tagging based on 189 fb⁻¹ Belle II data
 - Established the analysis framework

 - Selection optimization improve FOM by 35% compare to Belle '15 analysis • Expected statistical uncertainty is +17/-16% at 189 fb⁻¹ •Evaluated most of the systematic uncertainty, <- statistical uncertainty
 - dominated with 189 fb⁻¹ data
- First R(D*) measurement at Belle II using 189 fb⁻¹ data-set targeting the end of spring 2023
- New observables, e.g. $F_L^{D^*}$, $R_D^{(*)}$ (q^2) have sensitivity to NP will 363 fb⁻¹

Backup

Statistics estimation for D^{*-} polarization measurement

decay chain	-1 <co< th=""><th colspan="3">$\theta_{hel}(D^*) \leq -0.67$</th></co<>	$\theta_{hel}(D^*) \leq -0.67$		
All	110.6	188.2	6.4	

B->D* tau nu @ Belle D* I (206), D*pi (74), total (280)

Yield in Belle II MC after full Belle II selection	291.2
Yield in Belle II MC after full Belle-like selection	146.1
Ratio (Belle II sel./Belle-like sel.)	(2.00)

bellenote1369

B Br. 50% D* Br. 67.7% D Br. 36.4% / 26.6% Tau Br. 35.2% / 46.3%

 B->D* tau nu @ Belle II 363 fb⁻¹ D* I (188), D*pi (59), total (247) [total_{+ρ} (382)]

Statistics for $R_D^{(*)}(q^2)$

TABLE II. Luminosity required to discriminate various simulated "data" and tested model sets at 99.9% C.L. using $R_{D^{(*)}}(q^2)$ or $R(D^{(*)})$ (in parentheses). A constant efficiency is assumed.

£ [fb⁻	-1]	SM	V_1	V_2	$\begin{array}{c} \mathrm{model} \\ S_2 \end{array}$	Т	LQ_1	LQ_2
"data"-	V_1	1170 (270)		10 ⁶ (X)	500 (X)	900 (X)	4140 (X)	2860 (1390)
	V_2	1140 (270)	10 ⁶ (X)		510 (X)	910 (X)	4210 (X)	3370 (1960)
	<i>S</i> ₂	560 (290)	560 (13750)	540 (36450)		380 (X)	1310 (35720)	730 (4720)
	Т	600 (270)	680 (X)	700 (X)	320 (X)		620 (X)	550 (1980)
	LQ ₁	1010 (270)	4820 (X)	4650 (X)	1510 (X)	800 (X)		5920 (1940)
	LQ ₂	1020 (250)	3420 (1320)	3990 (1820)	1040 (20560)	650 (4110)	5930 (1860)	

Decay		$N_{ m sig}$
$B^- \rightarrow$	$D^0 au^- ar{ u}_ au$	314 ±
$B^- \rightarrow$	$D^{*0} au^- ar u_ au$	$639 \pm$
$\bar{B}^0 \rightarrow$	$D^+ au^- ar{ u}_ au$	$177 \pm$
$\bar{B}^0 \rightarrow$	$D^{*+} au^- ar{ u}_{ au}$	$245 \pm$
$\bar{B} \rightarrow$	$D au^- ar u_ au$	489 ±
$\bar{B} \rightarrow$	$D^* au^- ar{ u}_ au$	$888 \pm$

FIG. 23 (color online). Efficiency corrected q^2 distributions for $\bar{B} \to D\tau^- \bar{\nu}_{\tau}$ (top) and $\bar{B} \to D^* \tau^- \bar{\nu}_{\tau}$ (bottom) events with $m_{\rm miss}^2 > D\tau^- \bar{\nu}_{\tau}$ 1.5 GeV² scaled to the results of the isospin-constrained fit. Left: SM. Center: $\tan \beta / m_{H^{\pm}} = 0.30 \text{ GeV}^{-1}$. Right: $\tan \beta / m_{H^{\pm}} =$ 0.45 GeV⁻¹. The points and the shaded histograms correspond to the measured and expected distributions, respectively. The B^0 and B^+ samples are combined and the normalization and background events are subtracted. The distributions are normalized to the number of detected events. The uncertainty on the data points includes the statistical uncertainties of data and simulation. The values of χ^2 are based on this uncertainty.

Analysis of $R_D^{(*)}(q^2)$

- Only plot the size of statistical error
- Only add systematic error to be 7% from last page
- Systematic error relate to q² not added yet

PHYSICAL REVIEW D 91, 114028 (2015)

τ-μ LFU in Y(2s) Decays at Belle

If new physics involving in $B \rightarrow D(*)\tau v$ by considering the absence of light right-hand neutrinos

• Correlated processes: $t \to c\tau + \tau - decay$, $B_C \to \tau v$ decay, $\Lambda b \to \Lambda c \tau v^- decay$, and bb /cc⁻ $\to \tau \tau$ scattering

$$\Gamma_{\Upsilon_{\to}\ell\ell} = 4\alpha^2 e_q^2 \frac{|\Psi(0)|^2}{M^2} (1 + 2m_\ell^2/M^2) \sqrt{1 - 4m_\ell^2/M^2}$$
$$\implies R_{\tau\mu} = \frac{\Gamma_{\Upsilon_{\to}\tau\tau}}{\Gamma_{\Upsilon_{\to}\mu\mu}} = \frac{(1 + 2m_{\tau}^2/M_{\Upsilon}^2) \sqrt{1 - 4m_{\tau}^2}}{(1 + 2m_{\mu}^2/M_{\Upsilon}^2) \sqrt{1 - 4m_{\mu}^2}}$$

Recently, measurement at Babar based on the Y(3s) data-set

Using a 26.9 fb⁻¹ data sample collected at the Υ (3S) and 78.3 fb⁻¹ data sample at the Υ (4S) to describe the continuum, **BABAR measures:**

$$\mathbf{R}_{\tau\mu} = \frac{\mathcal{B}(\Upsilon(3S) \rightarrow \tau^+ \tau^-)}{\mathcal{B}(\Upsilon(3S) \rightarrow \mu^+ \mu^-)} = \mathbf{0.966}$$
$$= \mathbf{0.966}$$

This measurement is 6 x more precise than CLEO's result and is within 2σ of the SM value of 0.9948

value $\pm \sigma_{\rm stat} \pm \sigma_{\rm syst}$
$005 \pm 0.013 \pm 0.022$
$.04 \pm 0.04 \pm 0.05$
$.05\pm0.08\pm0.05$
0.39 ± 0.05

Table 1. Experimental results and SM predictions for $R_{\tau/\ell}^V$.

J. High Energ. Phys. 06, 019 (2017)

 $62 \pm 0.0084_{stat} \pm 0.014_{syst}$

62 ± 0.016 tot

J. M. Roney @ BEAUTY 2020

τ - μ LFU in Y(2s) Decays at Belle

Belle Total Integrated Luminosity (fb⁻¹)

Exp	Y4S/Off	Y1S/Off	Y2S/Off	Y3S/Off	Y5S/Off	
7-27	140.747/15.621	0/0	0 /0	0/0	0/ 0	
7-65	702.623/79.366	5.745/1.815	0/0	2.922/0.246	23.182/1.73	
31-55	457.911/51.915	0/0	0 /0	2.922 / 0.246	23.182/0	
61-73	104.704/21.918	5.745/1.815	24.913/1.708	0 /0	97.879/1.73	
31-73	562.615/73.833	5.745/1.815	24.913/1.708	2.922/0.246	121.061/1.73	
7-73	702.623/89.454	5.745/1.815	24.913/1.815	2.922/0.246	121.061/1.73	

The Y(2S) on-resonance sample collected by BaBar (Belle) is about ~ 10 (16) times larger than CLEO's sample. The Y(3S) on-resonance sample collected by BaBar (Belle) is about ~ 20 (2) times larger than CLEO's sample. Analyzing these existing data sets will allow to reduce each of the statistical uncertainties to roughly 1 - 2 percent.

We estimate that a total uncertainty of about 1% can be obtained by analyzing the existing data. Future measurement in Belle II can further reduce this uncertainty. Assuming that the important systematical error is governed by the limited statistics, we estimate that reaching a $\sigma_{SVS} = 0.4\%$ for R^{Y(1S)}, Belle II would require integrated luminosity of L ~ 1/ab τ/μ at the Y(3S) energy

Targeting a publication with Belle data-set

• Roughly schedule: preliminary result next Moriond 2022

FIG. 3. The result of the template fit to the $\Upsilon(3S)$ data in the $M_{\mu\mu}/\sqrt{s}$ variable. In (a) all events are shown, in (b) and (c) the dominant continuum $e^+e^- \rightarrow \mu^+\mu^-$ background is subtracted, and (c) is a magnified view of (b) to better show cascade decays and the radiative-tail region.

Reconstruction selections

	B _{tag}	$\mathcal{P}_{B_{tag}} > 0.001 \text{ and } M_{bc,B_{tag}} > 5.27 \text{ GeV}/c^2 \text{ and } -0$
good track		$dr < 2.0$ and $ dz < 4.0$ and $p_t > 0.1$ GeV/ c
# of tracks		The number of good tracks > 4
π+,	K ⁺ from D	[good track] and nCDCHits $>$ 20 and $\mathcal{P}_{K}^{\mathrm{binary}} >$
	π^0	pi0:eff40_May2020 and γ : clusterTiming < 200
K_S^0		KS0:merged and significanceOfDistance > 3 (befo
D		$1.78 < M_D < 1.92 { m GeV}/c^2$
$\gamma_{ m low}$		<pre>gamma:eff40_May2020 and clusterTiming < 20</pre>
$\pi^0_{ m slow}$		pi0:eff50_May2020 and γ : clusterTiming < 200
$\pi^+_{ m slow}$		dr < 2.0 and $ dz < 4.0$ and $p > 0.05$ GeV/ c
D^*		$0.130 < \Delta M_{D^*} < 0.170 \; {\rm GeV}/c^2 \; (0.100 < \Delta M_{D^*} < 0.100 \; {\rm GeV}/c^2 \;$
e, μ		[good track] and $\mathcal{P}^{ m global}_{\mu} > 0.9$, $\mathcal{P}^{ m global}_{e} > 0.9$
D		 treeFit('B0(B+):sig', conf_level=0.0, ipConstrations updateAllDaughters=True, massConstaint=[K_S0, pice
D _{sig}	vertex iit	 treeFit('B0(B+):sig', conf_level=-1.0, ipConstration updateAllDaughters=True, massConstaint=[D*0, D*+;
	Charged	$ dr < 5.0$ and $ dz < 20.0$ and $p_t > 0.1$ GeV/c and
ROE	Neutral	<pre>gamma:eff40_May2020 and clusterTiming < 20</pre>
		roeCharge == 0 and ROE_nTracks == 0

 $0.15 < \Delta E_{B_{\text{tag}}} < 0.1 \text{ GeV}$

> 0.1,
$$\mathcal{P}^{\mathrm{binary}}_{\pi} > 0.1$$

0 ns

ore B_{sig} vertex fit)

0 ns

) ns

 $0.190 \text{ GeV}/c^2$) for $D^{*+}(D^{*0})$

int=False, 0], path=path)

aint=False, D0, D+, K_S0, pi0], path=path)

◀----

d nCDCHits > 0

0 ns

Tag B meson

Tracks

Hadrons

Neutrals

Leptons

Constraint $D^{(*)}$ daughter's masses to improve $D^{(*)}$ selections

Constraint $D^{(*)}$ masses additionally to improve $M_{\rm miss}^2$ resolution

Vertex

Neutrals of Rest of event

Fitter validation with pseudo data

- Producing 5000 random pseudo data set with 189 fb⁻¹ based on PDF where $R(D^*) = 0.254$ (SM expectation)
- The fitter performance confirmed by R(D*) pull distribution
- by scanned input $R(D^*)$ in the range of 0.05 to 2.0

• Linearity check of fitter has also been confirmed based on Asimov fit method, Eur.Phys.J.C71:1554,2011

