Random Forests: Theory & Intuition

 $E[mean\ squared\ error] = noise + bias^2 + variance$

ias: Difference between averaged prediction of model versus the Bayes mode ariance: Variability of learned model conditioned upon the learning set.

oise: Irreducible error.

 $E[mean\ squared\ error] = noise + bias^2 + variance$

Bias: Difference between averaged prediction of model versus the Bayes mode I variance: Variability of learned model conditioned upon the learning set.
I value: Irreducible error.

Underfit model: High Bias, Low Variance.

 $E[mean\ squared\ error] = noise + bias^2 + variance$

Bias: Difference between averaged prediction of model versus the Bayes model versus the Bayes model variance: Variability of learned model conditioned upon the learning set.

Noise: Irreducible error.

Underfit model: High Bias, Low Variance.

Overfit model: High Variance, Low Bias.

 $E[mean\ squared\ error] = noise + bias^2 + variance$

s: Difference between averaged prediction of model versus the Bayes model.

iance: Variability of learned model conditioned upon the learning set.

se: Irreducible error.

Underfit model: High Bias, Low Variance.

Overfit model: High Variance, Low Bias.

eraging over large ensembles of decorrelated models reduces variance, while maintaining bias.

Ensemble Learning

condorcet's Jury Theorem: A group wants to arrive at the "correct" decision via najority vote, wherein each individual has a probability p of voting for the orrect decision. What should the size of the group be for optimal performance

ntuitive example: The performance of the "Ask The Audience" lifeline in Who Vants To Be A Millionaire? (92% accuracy vs 65% for "Phone A Friend")

ggregating randomized models decreases the variance of the ensemble.

nsemble Prediction: Weather forecasting.

Ensemble Learning: Intuition

Ensemble Learning: Intuition

Random Forests: Details

• Bagging: **B**ootstrap **agg**regation

• Random Subsampling over features (aka "feature bagging")

Random Forests: Bootstrapping

Original Toy Dataset

L	X2	Х3	Х4	Υ
	0	2.7	314	17
	0	3.14	516	42
	1	3.14	400	31
	1	2.3	300	99
	0	2.3	200	157

Random Forests: Bootstrapping

Original Toy Dataset

X2	Х3	X4	Y	7
0	2.7	314	17	
0	3.14	516	42	
1	3.14	400	31	_
1	2.3	300	99	
0	2.3	200	157	

Bootstrapped Dataset 1

X1	X2	Х3	X4	Y
1	0	2.7	314	17
1	0	2.7	314	17
3	1	3.14	400	31
5	1	2.3	300	99
5	1	2.3	300	99

Random Forests: Feature Bagging

Bootstrapped Dataset 1

X2	Х3	X4	Υ
0	2.7	314	17
0	2.7	314	17
1	3.14	400	31
1	2.3	300	99
1	2.3	300	99

Tree 1

Random Forests: Feature Bagging

L	X2	Х3	X4	Y
	0	2.7	314	17
	0	2.7	314	17
	1	3.14	400	31
	1	2.3	300	99
	1	2.3	300	99

Random Forests: Feature Bagging

l	X2	Х3	X4	Υ
	0	2.7		17
	0	2.7		17
	1	3.14		31
	1	2.3		99
	1	2.3		99

Random Forests: Ensemble

Random Forests: Predictions (Aggregation)

New Sample for Prediction

Random Forests: Predictions (Aggregation)

New Sample for Prediction

Regression, $y \downarrow prediction = y \downarrow 1 + y \downarrow 2 + y$

Classification, $y \downarrow prediction = majority(y \downarrow i)$

Random Forests: Easy Error Estimation, OOB estimates

Original Toy Dataset

L	X2	Х3	X4	Υ
	0	2.7	314	17
	0	3.14	516	42
	1	3.14	400	31
	1	2.3	300	99
	0	2.3	200	157

Bootstrapped Dataset 1

X1	X2	Х3	X4	Y
1	0	2.7	314	17
1	0	2.7	314	17
3	1	3.14	400	31
5	1	2.3	300	99
5	1	2.3	300	99

In average, about 32% of the samples will not end up in a specific Bootstrapped dataset. See are referred to as Out Of Bag samples, or OOB samples.

Random Forests: Easy Error Estimation, OOB estimates

- p 1: For every sample, determine the trees where it is an OOB sample.
- p 2: Make predictions for this sample from these trees.
- p 3: Calculate final averaged prediction for this sample.
- p 4: Calculate error for this sample.
- p 5: Repeat for all points to find OOB error.