Random Forests:
Theory & Intuition
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Bias-Variance Tradeoff

E[mean squared error] = noise + bias? + variance

. Difference between averaged prediction of model versus the Bayes model.
‘ance: Variability of learned model conditioned upon the learning set.
se: Irreducible error.
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Underfit model: High Bias, Low Variance. Overfit model: High Variance, Low Bias.

eragingover large ensembles of decorrelated models reduces variance, while maintaining bias.



Ensemble Learning

ondorcet’s Jury Theorem: A group wants to arrive at the “correct” decision vic
1ajority vote, wherein each individual has a probability p of voting for the
orrect decision. What should the size of the group be for optimal performanc

1tuitive example: The performance of the “Ask The Audience” lifeline in Who
Vants To Be A Millionaire? (92% accuracy vs 65% for “Phone A Friend”)

ggregating randomized models decreases the variance of the ensemble.

nsemble Prediction: Weather forecasting.



Ensemble Learning: Intuition
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Random Forests: Details

* Bagging: Bootstrap aggregation

 Random Subsampling over features (aka “feature bagging”)
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Random Forests: Bootstrapping
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Random Forests: Predictions (Aggregation)

New Sample for Prediction
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Random Forests: Predictions (Aggregation)

New Sample for Prediction

1 0 2.7 314

/Q

/Q\ Q\
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Q Q Classification, ylprediction =majority(y/)



Random Forests: Easy Error Estimation, OOB estimates

Original Toy Dataset Bootstrapped Dataset 1

AR RN BRI RN
0 2.7 314 17 1 0 2.7 314 17

0 3.14 516 42 1 0 2.7 314 17
1 3.14 400 31 3 1 3.14 400 31
1 2.3 300 99 5 1 2.3 300 99
0 2.3 200 157 5 1 2.3 300 99

n average, about 32% of the samples will not end up in a specific Bootstrapped dataset.
e are referred to as Out Of Bag samples, or OOB samples.



Random Forests: Easy Error Estimation, OOB estimates

p 1: For every sample, determine the trees where it is an OOB sample.

p 2: Make predictions for this sample from these trees.
p 3: Calculate final averaged prediction for this sample.

p 4: Calculate error for this sample.

p 5: Repeat for all points to find OOB error.



