

Top quark properties

Jacob Linacre (FNAL) on behalf of the ATLAS and CMS collaborations

FPCP 2015 26th May 2015

Top quark properties

- Why are top properties interesting?
 - top quark decays before it can form bound states
 - unique opportunity to study a "bare" quark (using the decay products)
 - heaviest elementary particle known
 (m_t ~ 173 GeV)
 - large coupling to Higgs boson suggests special role in EWSB
 - top properties
 measurements test SM
 and probe new physics

- Today I'll show just a few of the many important results from ATLAS and CMS at the LHC
- focusing on results in $t\overline{t}$ pair production from the last 1 year
 - top quark mass
 - $t\overline{t}$ spin correlations
 - production of $t\overline{t}$ + vector boson
 - flavour changing neutral currents in $t\overline{t}$ events

- A complete summary can be found on the experiments' public twiki pages:
 - https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults
 - https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP

LHC

Top Quark Pairs per hour at peak inst. Iuminosity

The LHC at 8 TeV produced **700 times more top quark pairs** per hour than the Tevatron

5M top pairs per experiment in 2012!

 LHC is a true top factory!
 study top quark with unprecedented precision

cross sections from arXiv:1303.6254: Tevatron ~7pb, LHC@7TeV ~172pb, LHC@8TeV ~246pb. Peak inst. luminosity: Tevatron: ~ $4x10^{32}$ cm⁻²s⁻¹, LHC@7TeV: ~ $4x10^{33}$ cm⁻²s⁻¹, LHC@8TeV: ~ $8x10^{33}$ cm⁻²s⁻¹

Top quark pair production

Fop quark-antiquark pairs $(t\overline{t})$ produced via strong interaction

gluon fusion: ~85% at the LHC

qq annihilation: ~15% at the LHC

Top quark decay

- Top decays via weak interaction
- almost exclusively to a **b-quark and a W boson**

W boson decays to quark+antiquark (68%) or lepton+neutrino (32%)

tt decay channels

Decay channel categories based on how the two W bosons decay

Top quark mass

Top quark mass (m_t)

- SM vacuum stability boundary coincides closely with measured m_t
 - unstable when Higgs quartic coupling λ runs < 0
 - just a coincidence, or insight to new physics?

General approach:

- 1) select $t\overline{t}$ events
- 2) construct **observable** sensitive to m_t
- **3) parametrise** observable in m_t using MC simulation
- 4) fit to data, extract mass

As a result of the calibration these measurements measure the MC mass parameter
 does not precisely correspond to well-defined theoretical definition

implies additional uncertainty ~0.5 GeV when input to theory

FPCP 2015 - Top quark properties - Jacob Linacre

- Reconstruct m_t-sensitive variable
- Fit data using templates as a function of m_t-sensitive variable
 - > 3D fit to constrain light and b jet energy calibration (lepton+jets)
- Fit ratio $R_{3/2} = m_t^{reco}/m_W^{reco}$ (all-hadronic)

Combinations

	19.7 fb ⁻ ' (8 TeV) + 5.1 fb ⁻ ' (7 TeV)
CMS Preliminary	
CMS 2010, dilepton	175.5 ± 4.6 ± 4.6 GeV
JHEP 07 (2011) 049, 36 pb ⁻¹	(value ± stat ± syst)
CMS 2010, lepton+jets	173.1 ± 2.1 ± 2.6 GeV
PAS TOP-10-009, 36 pb ⁻¹	(value ± stat ± syst)
CMS 2011, dilepton	172.5 ± 0.4 ± 1.4 GeV
EPJC 72 (2012) 2202, 5.0 fb ⁻¹	(value ± stat ± syst)
CMS 2011, lepton+jets	173.5 ± 0.4 ± 1.0 GeV
JHEP 12 (2012) 105, 5.0 fb ⁻¹	(value ± stat ± syst)
CMS 2011, all-hadronic	173.5 ± 0.7 ± 1.2 GeV
EPJ C74 (2014) 2758, 3.5 fb ⁻¹	(value ± stat ± syst)
CMS 2012, lepton+jets	172.0 ± 0.1 ± 0.7 GeV
PAS TOP-14-001, 19.7 fb ⁻¹	(value ± stat ± syst)
CMS 2012, all-hadronic	172.1 ± 0.3 ± 0.8 GeV
PAS TOP-14-002, 18.2 fb ⁻¹	(value ± stat ± syst)
CMS 2012, dilepton	172.5 ± 0.2 ± 1.4 GeV
PAS TOP-14-010, 19.7 fb ⁻¹	(value ± stat ± syst)
CMS combination	172.38 ± 0.10 ± 0.65 GeV
September 2014	(value ± stat ± syst)
Tevatron combination	174.34 ± 0.37 ± 0.52 GeV
July 2014 arXiv:1407.2682	(value ± stat ± syst)
World combination March 2014	173.34 ± 0.27 ± 0.71 GeV
ATLAS, CDF, CMS, D0	(value ± stat ± syst)
165 170	175 180
	m _t [GeV]

$m_t = 172.38 \pm 0.66 \text{ GeV} (0.4\%)$

preliminary CMS combination: conservative treatment of systematic uncertainty correlations

$m_t = 172.99 \pm 0.91 \text{ GeV} (0.5\%)$

This ATLAS combination only includes 7 TeV dilepton and lepton+jets

- Reached sub-GeV precision where exact definition of mass parameter is very important!
- Uncertainties systematics dominated
- largest systematic typically from differences in the jet energy response for different jet flavours

Spin correlations

Introduction to tt spin correlations

Same and opposite helicity gluon fusion contributions impart different spin correlations to the top quark pairs

Opposite helicity gluons Negative spin correlations Same helicity gluons **Positive spin correlations**

Same helicity contribution is dominant near threshold

- Opposite helicity becomes dominant when E_t >> m_t (helicity conservation)
- Expected net spin correlation strength of ~30% at the LHC
 - modified in many new physics scenarios

Lepton $\Delta \phi$ **distribution**

- In $t\bar{t}$ dilepton final state, spin correlations in same-helicity gluon fusion give **alignment in** $\Delta \phi$
 - lab frame azimuthal angle between two leptons

∆φ distribution in presence and absence of spin correlations

- Kinematically, high $\Delta \phi$ is preferred because the tops are produced back to back
 - relative enhancement at low
 Δφ due to spin correlations
- Lepton angles have excellent experimental resolution
 - Δφ most precise probe of spin correlations (unique to LHC)

- Select $t\overline{t}$ events in dilepton final state
- data-driven prediction
 for dominant Z/γ*+jets
 background
- Quantify spin
 correlation strength as fraction "f" of SM
 expectation
 - template fit using simulated correlated and uncorrelated tt
- $f = 1.20 \pm 0.05 \pm 0.13$
- proof top really behaves like a bare quark!

arxiv:1412.4742

Probing SUSY with spin correlations

- Supersymmetric top squark pair production looks like $t\bar{t} + MET$
- Squarks have spin-zero
 - daughter top quarks look similar to **uncorrelated** $t\bar{t}$ events
 - but only ~1/6 of the $t\bar{t}$ cross section for $m_{stop} = m_t$
- **Total cross section measurement** also sensitive to stops
- combining the two, beginning to have sensitivity
- ATLAS excludes
 m_t < m_{stop} <191 GeV

Important region to probe based on naturalness considerations

Direct searches insensitive when $\tilde{\chi}^0_1$ soft

26/05/15

ttZ and ttW

- ttZ provides first experimental measurement of top-Z coupling
 - (ttW does not measure top-W coupling)
- ttW/Z production can be enhanced by new physics
 - composite Higgs, Z', Little Higgs
- Same 3 channels as for tt but additional charged lepton(s) from W (Z) decay
 - Iook for 2l, 3l, 4l final states with Z mass or same charge

- ATLAS: mostly cut-based analysis
- CMS: multivariate approach to signal and background event reconstruction and discrimination
- Data driven approach to estimate large non-prompt lepton background
- Sensitivity still limited by statistics

CMS observes ttZ (6.4 σ), both experiments see evidence for ttW

	ttW				ttZ			
ttW and ttZ	Cross section		Significance		Cross section		Significance	
measurements	Theory* (fb)	Observed (fb)	Expected	Observed	Theory* (fb)	Observed (fb)	Expected	Observed
ATLAS	202	300	2.3σ	3.1σ	206	150	3.4σ	3.1σ
CMS (prelim.)	203	382	3.5σ	4.8σ	200	242	5.7σ	6.4σ

*NLO xsecs from JHEP 11 (2012) 056

- Constraints on dimension-6 operators parameterising NP
 - select 5 possible operators
 with small effect on inclusive
 H and tt production, but
 large effect on ttW/Z
 - all consistent with SM

Flavour changing neutral currents

Search for FCNC in top decays

- Flavour changing neutral currents highly suppressed in SM
- Search for $t\bar{t}$ events with a FCNC decay, $t \rightarrow Zq$

$$tt \rightarrow Wb + Zq \rightarrow \ell \nu b + \ell \ell q$$

- Require two opposite-sign, isolated leptons (e or µ) consistent with
 Z-boson decay and an extra charged lepton consistent with W-boson decay
- Perform counting experiment in signal region: $\mathcal{B}(t \rightarrow Zq) < 0.06\%$ (95% CL) m_{zi} distribution (before m_{Wi} requirement)
 m_{Wb} vs m_{zi} distribution

u, c

arxiv:1312.4194

FCNH search (multileptons)

- Cut based analysis
 - ▶ look for 3ℓ or same-charge 2ℓ
 - (a bit like ttW final state)
- Data driven approach to estimate large nonprompt lepton background
- ► B(t→Hc) < 0.93% (95% CL)
- Flavour-violating Yukawa coupling $\sqrt{|\lambda_{tc}^H|^2 + |\lambda_{ct}^H|^2} < 0.18$.

Summary and Outlook

- No significant deviations seen from SM expectations in LHC Run 1
 - Mass measurement has reached remarkable precision
 - systematics dominated, unlikely to be surpassed quickly in Run 2
 - Observation of $t\overline{t}$ correlated spins
 - probe of new physics including low-mass top squark pairs
 - Observation of ttZ
 - Run 2 statistics will allow us to measure ttZ differentially, along with other rare processes (ttW, ttH, ttγ)
 - No evidence for FCNCs

Outlook for LHC Run 2

Another order of magnitude increase for $t\bar{t}$ pair production!

- LHC is a top quark factory, and with Run 2 will reach ultimate statistical precision
 - improvements in systematic and theoretical uncertainties will be essential to keep pace
- Could new physics show up first in $t\overline{t}$ in Run 2?

First test 13 TeV collisions last week!

First test 13 TeV collisions last week!

13 TeV collisions

Run: 265545 Event: 2501742 2015-05-21 09:58:30 CEST

top mass combination systematics

ATLAS

	$t\bar{t} \rightarrow lepton+jets$		$t\bar{t} \rightarrow dilepton$	Combination		
	$m_{\rm top}^{\ell+{\rm jets}}$ [GeV]	JSF	bJSF	m ^{dil} _{top} [GeV]	m_{top}^{comb} [GeV]	ρ
Results	172.33	1.019	1.003	173.79	172.99	
Statistics	0.75	0.003	0.008	0.54	0.48	0
- Stat. comp. (m_{top})	0.23	n/a	n/a	0.54		
– Stat. comp. (JSF)	0.25	0.003	n/a	n/a		
– Stat. comp. (bJSF)	0.67	0.000	0.008	n/a		
Method	0.11 ± 0.10	0.001	0.001	0.09 ± 0.07	0.07	0
Signal MC	0.22 ± 0.21	0.004	0.002	0.26 ± 0.16	0.24	+1.00
Hadronisation	0.18 ± 0.12	0.007	0.013	0.53 ± 0.09	0.34	+1.00
ISR/FSR	0.32 ± 0.06	0.017	0.007	0.47 ± 0.05	0.04	-1.00
Underlying event	0.15 ± 0.07	0.001	0.003	0.05 ± 0.05	0.06	-1.00
Colour reconnection	0.11 ± 0.07	0.001	0.002	0.14 ± 0.05	0.01	-1.00
PDF	0.25 ± 0.00	0.001	0.002	0.11 ± 0.00	0.17	+0.57
W/Z+jets norm	0.02 ± 0.00	0.000	0.000	0.01 ± 0.00	0.02	+1.00
W/Z+jets shape	0.29 ± 0.00	0.000	0.004	0.00 ± 0.00	0.16	0
NP/fake-lepton norm.	0.10 ± 0.00	0.000	0.001	0.04 ± 0.00	0.07	+1.00
NP/fake-lepton shape	0.05 ± 0.00	0.000	0.001	0.01 ± 0.00	0.03	+0.23
Jet energy scale	0.58 ± 0.11	0.018	0.009	0.75 ± 0.08	0.41	-0.23
<i>b</i> -Jet energy scale	0.06 ± 0.03	0.000	0.010	0.68 ± 0.02	0.34	+1.00
Jet resolution	0.22 ± 0.11	0.007	0.001	0.19 ± 0.04	0.03	-1.00
Jet efficiency	0.12 ± 0.00	0.000	0.002	0.07 ± 0.00	0.10	+1.00
Jet vertex fraction	0.01 ± 0.00	0.000	0.000	0.00 ± 0.00	0.00	-1.00
b-Tagging	0.50 ± 0.00	0.001	0.007	0.07 ± 0.00	0.25	-0.77
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.15 ± 0.04	0.000	0.001	0.04 ± 0.03	0.08	-0.15
Leptons	0.04 ± 0.00	0.001	0.001	0.13 ± 0.00	0.05	-0.34
Pile-up	0.02 ± 0.01	0.000	0.000	0.01 ± 0.00	0.01	0
Total	1.27 ± 0.33	0.027	0.024	1.41 ± 0.24	0.91	-0.07

CMS

	Correlations		Combined	
	ρ_{year}	$ ho_{chan}$	uncertainty	
Experimental uncertainties			-	
In-situ JSF factor	0	0	0.10	
Inter-calibration JES component	1	1	0.01	
MPF in-situ JES component	1	1	0.05	
Uncorrelated JES component	0	1	0.14	
Other JES uncertainties	0	0	0.00	
Lepton energy scale	1	1	0.02	
$E_{\rm T}^{\rm miss}$ scale	1	1	0.06	
Jet energy resolution	1	1	0.17	
b-tagging	1	1	0.03	
Trigger	0	0	0.04	
MHI(Pileup)	0	1	0.20	
Background Data	0	0	0.05	
Background MC	1	1	0.07	
Fit calibration	0	0	0.05	
Modeling of hadronization				
Flavor JES component	1	1	0.05	
Flavor-dependent hadronization uncertainty	1	1	0.36	
b fragmentation and B branching fractions	1	1	0.14	
Modeling of the hard scattering process and radiation				
Parton distribution functions	1	1	0.06	
Renormalization and factorization scales	1	1	0.17	
ME-PS matching threshold	1	1	0.16	
ME generator	1	1	0.13	
Top quark p_T	1	1	0.12	
Modeling of non-perturbative QCD				
Underlying event	1	1	0.16	
Color reconnection	1	1	0.18	
Statistical uncertainty			0.10	
Total systematic uncertainty			0.65	
Total uncertainty			0.65	

Limits from ttZ/W

operator	best fit point(s)	$1\sigma CL$	$2\sigma CL$
<i>ī</i> uB	-0.07 and 0.07	{-0.11, 0.11}	{-0.14, 0.14}
\bar{c}'_{HO}	0.12	{-0.07, 0.18}	{-0.33, -0.24} and {-0.02, 0.23}
\bar{c}_{HQ}	-0.09 and 0.41	{-0.22, 0.08} and {0.24, 0.54}	{-0.31, 0.63}
\bar{c}_{Hu}	-0.47 and 0.13	{-0.60, -0.23} and {-0.11, 0.26}	{-0.71, 0.37}
¯c _{3₩}	-0.28 and 0.28	{-0.36, -0.18} and {0.18, 0.36}	{-0.43, 0.43}

CMS spin correlations

Quantify the Δφ shape with an asymmetry variable:

$$A_{\Delta\phi} = \frac{N(\Delta\phi_{\ell^+\ell^-} > \pi/2) - N(\Delta\phi_{\ell^+\ell^-} < \pi/2)}{N(\Delta\phi_{\ell^+\ell^-} > \pi/2) + N(\Delta\phi_{\ell^+\ell^-} < \pi/2)}$$

• 5.2 σ separation

between data and uncorrelated prediction

Experimental proof the top quark behaves like a bare quark! $A_{\Delta\phi}$ NLO (uncorrelated) (21.0 +1.3 - 0.8)% (21.0 +1.3 - 0.8)% (11.5 +1.4 - 1.6)% (11.3 ± 1.0 ± 0.6 ± 1.2)% stat. syst. top pT reweighting

SM spin correlations

