Testing B-anomaly at ATLAS & CMS

Yuta Takahashi (Zurich)

Q. Why ATLAS & CMS care about B-anom. ?

Indirect measurement with large statistics. What is the advantage of ATLAS & CMS measurement ?

b → sµµ

 $b \rightarrow s \mu \mu$

3 /26

b

S

 $\bigvee_{\mu}^{\mu} \frac{1}{30 \text{TeV}^2} (\bar{s}_L \gamma_\mu b_L) (\bar{\mu}_L \gamma^\mu \mu_L)$

<u>b</u> → sµµ

3 /26

at LHC

b → sµµ

if Yukawa-type coupling ... $\Lambda \sim O(a \text{ few}) \text{ TeV}$

b → sµµ

b

3 /26

 $\frac{1}{\Lambda^2} (\overline{\psi}_i \psi_j)^2$ b

S

+ Within reach at LHC

 $2.5 \text{TeV}^2 (\bar{c}_L \gamma_\mu b_L) (\bar{\tau}_L \gamma^\mu \nu_L)$

if Yukawa-type coupling ... $\Lambda \sim O(a \text{ few}) \text{ TeV}$

b → sµµ

μ

b

3 /26

 $\frac{1}{\Lambda^2} \, (\overline{\psi}_i \, \psi_j)^2$

b

S

 $\frac{1}{30\text{TeV}^2} (\bar{s}_L \gamma_\mu b_L) (\bar{\mu}_L \gamma^\mu \mu_L)$

Within reach at LHC

 $\overline{2.5\text{TeV}^2}^{(\bar{c}_L\gamma_\mu b_L)(\bar{\tau}_L\gamma^\mu\nu_L)}$

if Yukawa-type coupling ... $\Lambda \sim O(a \text{ few}) \text{ TeV}$

Possibility of Combined explanation

There are other reasons !

 \rightarrow Related to S/B

Indirect measurements (B-factory)

There are other reasons !

 \rightarrow Related to S/B

Indirect measurements (B-factory)

Direct measurements (ATLAS & CMS)

 $\sim \frac{(G_F m_{W/Z}^2)^2}{(\hat{s})}$

There are other reasons !

 \rightarrow Related to S/B

Indirect measurements (B-factory)

Direct measurements

(ATLAS & CMS)

/26

S/B ratio is enhanced

1. Review latest search results on

5

- Leptoquark
- Z' and W'
- 2. Future prospects

Leptoquark (LQ)

If we want to explain both anomalies at the same time, we need hierarchical coupling

Coupling to 3rd generation preferable !

 $\mu/
u_{\mu}$

 $\begin{array}{ccc} 0 & 0 \\ 0 & \pm 0.01 \end{array}$

 τ / ν_{τ}

 e/ν_e

 $d/u' \ \lambda_{\ell q} \sim \ s/c'$

b/t'

6

How to find LQ at LHC ?

Production

Decay

Cover all possib

- LQs are copiously pair-produced through strong interaction
- For scalar LQ, one can calculate crosssections model independently (not the case for vector LQ)

/26

Lepton

ilities	LQLQ →	τ	Vτ	
Quark	t 1	2τ + 2t	2v + 2t	-
	b	2τ + 2b	2v + 2b	
	<			

$LQLQ \rightarrow 2\tau + 2t$

Defined 3 categories based on decay topology

8

/26

- opposite sign $l\tau_h$
- Same-sign $l\tau_h$
- *l*τ_hτ_h

Construct $p_T(top)$ by using jet triplet that gives best top-quark mass \rightarrow use this for testing signal presence

Signal has higher p_T(top)

ttbar with jets misidentified as τ_h \rightarrow estimated using control region in data

(Inverted τ_h isolation)

$LQLQ \rightarrow 2\nu + 2t, 2\nu + 2b^{10/26}$

Re-interpret existing SUSY searches (\tilde{b}, \tilde{t}) in terms of scalar LQ

How the signal looks like ?

Imbalance of the events

Scalar LQ (for both types) \rightarrow 1 TeV

- A-priori, there is no guarantee that kinematics are same between scalar and vector LQ
- We checked using MC simulation and found they are similar
- Instead of redoing the analysis, we set the limit for vector LQ using its cross-section (arXiv:1706.07641) \rightarrow 1.8 TeV

Single LQ production

13/26

Cross-section depends on (unknown) LQ coupling λ

+ for LQ3, suppression due to b-quark PDF

Single LQ production

13/26

Cross-section depends on (unknown) LQ coupling λ

+ for LQ3, suppression due to b-quark PDF

W' and/or Z'

15 /26

At first sight, extra $SU(2)_{L}$ doublet seems to be a good solution

• This does not work, because W' and Z' couplings are related by SU(2) symmetry \rightarrow lead to $M^{NP}(b \rightarrow s\mu\mu) \sim M^{NP}(b \rightarrow c\tau\nu)$

W' and/or Z'

At first sight, extra $SU(2)_{L}$ doublet seems to be a good solution

• This does not work, because W' and Z' couplings are related by SU(2) symmetry \rightarrow lead to $M^{NP}(b \rightarrow s\mu\mu) \sim M^{NP}(b \rightarrow c\tau\nu)$

e.g.) solution

Need to give-up combined explanation (we might have false alarm for one of the anomalies!)

¹⁵/26

Search for Z'

Q: What would be the (mass, coupling) favoured by B-physics anomalies ?

A: Z' contribution to B-anomaly = $\delta_{bs}g_bg_{\mu}/m_{Z'}^2$ \rightarrow any combination that gives right size of anomaly is allowed (δ_{bs} should be kept small not to conflict with Bs mixing through bs $\rightarrow Z' \rightarrow bs$)

Search for Z'

Q: What would be the (mass, coupling) favoured by B-physics anomalies ?

A: Z' contribution to B-anomaly = $\delta_{bs}g_bg_{\mu}/m_{Z'}^2$ \rightarrow any combination that gives right size of anomaly is allowed (δ_{bs} should be kept small not to conflict with Bs mixing through bs $\rightarrow Z' \rightarrow bs$)

(Although it is not necessary), if Z' is flavouruniversal (SSM)

16 /26

SSM Z' excluded up to 4.0 TeV

→ most of the
 (mass, coupling),
 favoured by B anom. is excluded

- It is not necessary to assume SSM
 - Couplings to light-quarks are not necessary
- Minimum Lagrangian is ...

δbsgb s z' gμ μ

b

 $\mathscr{L} \supset Z'^{\mu} [g_{\mu} \bar{\mu} \gamma^{\mu} \mu + g_{\mu} \bar{\nu}_{\mu} \gamma^{\mu} P_L \nu_{\mu} + g_b \sum_{q=t,b} \bar{q} \gamma^{\mu} P_L q + (g_b \delta_{bs} \bar{s} \gamma^{\mu} P_L b)]$

- It is not necessary to assume SSM
 - Couplings to light-quarks are not necessary
- Minimum Lagrangian is ...

 $\mathscr{L} \supset Z'^{\mu}[g_{\mu}\bar{\mu}\gamma^{\mu}\mu + g_{\mu}\bar{\nu}_{\mu}\gamma^{\mu}P_{L}\nu_{\mu} + g_{b}\sum \bar{q}\gamma^{\mu}P_{L}q + (g_{b}\delta_{bs}\bar{s}\gamma^{\mu}P_{L}b)]$ q=t,b μ, ν_{μ} gμ μ, ν_{μ}

- It is not necessary to assume SSM
 - Couplings to light-quarks are not necessary
- Minimum Lagrangian is ...

17/26

 μ

 $\delta_{bs}g_{b}$

 \mathbf{Z}'

gμ

b

- It is not necessary to assume SSM
 - Couplings to light-quarks are not necessary
- Minimum Lagrangian is ...

- It is not necessary to assume SSM
 - Couplings to light-quarks are not necessary
- Minimum Lagrangian is ...

 μ

 $\delta_{bs}g_{b}$

 \mathbf{Z}'

gμ

b

Flavoured Z'

Search for Z' that only couples to $\boldsymbol{\mu}$

- Select events with 4 muons
- m(4µ) ~ mz
- Choose 2 muons, that, most probably come from Z'

Small coupling to muon \rightarrow large δ_{bs} to explain B-anom. \rightarrow conflict with Bs mixing

Search for W_R'

- If W_R ' is responsible for b $\rightarrow c\tau v$ anomaly, couplings of W'bc, W' τv is necessary
 - In this case, ν should be RH and m(ν_R) < 5 GeV
- Under this consideration, W' $\rightarrow \tau v$ is the most promising search channel

Search for W_R'

- If W_R ' is responsible for b $\rightarrow c\tau v$ anomaly, couplings of W'bc, W' τv is necessary
 - In this case, v should be RH and m(v_R) < 5 GeV
- Under this consideration, W' $\rightarrow \tau \nu$ is the most promising search channel

Search for W_R'

- If W_R ' is responsible for b $\rightarrow c\tau v$ anomaly, couplings of W'bc, W' τv is necessary
 - In this case, v should be RH and m(v_R) < 5 GeV
- Under this consideration, W' $\rightarrow \tau \nu$ is the most promising search channel

19/26

Note: W' does *not* necessarily couple *all* types of fermions (at least b and c !) 1 τ_h + missing E_T (due to ν) with back-to-back topology (Δ ϕ > 2.4 rad)

$$m_T = \sqrt{2p_T^{\tau} E_T^{miss} (1 - \cos \Delta \phi(\vec{p_T^{\tau}}, \vec{p_T^{miss}}))}$$

Assume only minimum couplings (W_R'b_{RC_R})

What's next?

- Wide ττ resonance search
- Development of boosted top/bottom tagging
- Cross-checking B-anomalies at CMS

Wide tt resonance search^{22/26}

If LQ is beyond LHC energy reach,

- LQ is preferably produced via off-shell
- t-channel
 - \rightarrow make wide $\tau\tau$ resonance

2.

Although I said (W'[±], Z') SU(2)_L

doublet is not a good solution for combined explanation, there are still allowed parameter space

Wide resonance search is difficult

e.g.) di-jet resonance

Instead, one can look at angular separation between jets (width independent)

New physics: flat in Δη QCD BG:peak at small Δη

²³/26

Wide resonance search is difficult

e.g.) di-jet resonance

Narrow resonance Wide resonance

Instead, one can look at angular separation between jets (width independent)

New physics: flat in $\Delta \eta$ QCD BG:peak at small $\Delta \eta$

²³/26

Wide resonance search is difficult

e.g.) di-jet resonance

Narrow resonance Wide resonance

Instead, one can look at angular separation between jets (width independent)

.

New physics: flat in Δη QCD BG:peak at small Δη

Do this using $\tau\tau$ final state

²³/26

Boosted top/bottom tagging²⁴/26

- Search for high-mass $Z' \rightarrow b\bar{b}$, $t\bar{t}$ is motivated
- However, as Z' becomes heavier, top/bottom quark carry more p_T , which makes them difficult to identify

eff. ~ 50% @ fake rate ~ 3%

b-quark

For high p_T b-jets, one cannot reconstruct secondary vertex

• Difficult: CMS is designed for high p_T physics (Hard to trigger B events, whose daughters are soft \rightarrow lead to huge trigger rate)

Currently, ~15% of trigger budget allocated to B's and we cannot increase this fraction

New Idea

• Difficult: CMS is designed for high p_T physics (Hard to trigger B events, whose daughters are soft \rightarrow lead to huge trigger rate)

Currently, ~15% of trigger budget allocated to B's and we cannot increase this fraction

New Idea

• Allocate more trigger bandwidth for Bphysics, when luminosity is low

• Difficult: CMS is designed for high p_T physics (Hard to trigger B events, whose daughters are soft \rightarrow lead to huge trigger rate)

Currently, ~15% of trigger budget allocated to B's and we cannot increase this fraction

New Idea

- Allocate more trigger bandwidth for Bphysics, when luminosity is low
- At the same time, we use "Parking" technique (do full reconstruction later → increase further trigger bandwidth; 3kHz)

• Difficult: CMS is designed for high p_T physics (Hard to trigger B events, whose daughters are soft \rightarrow lead to huge trigger rate)

Currently, ~15% of trigger budget allocated to B's and we cannot increase this fraction

New Idea

- Allocate more trigger bandwidth for Bphysics, when luminosity is low
- At the same time, we use "Parking" technique (do full reconstruction later → increase further trigger bandwidth; 3kHz)
- So far, we collected 10B unbiased B events → plan to cross-check R(K*) before Belle-II starts (2023)

²⁵ /26

• Difficult: CMS is designed for high p_T physics (Hard to trigger B events, whose daughters are soft \rightarrow lead to huge trigger rate)

Currently, ~15% of trigger budget allocated to B's and we cannot increase this fraction

New Idea

- Allocate more trigger bandwidth for Bphysics, when luminosity is low
- At the same time, we use "Parking" technique (do full reconstruction later → increase further trigger bandwidth; 3kHz)
- So far, we collected 10B unbiased B events → plan to cross-check R(K*) before Belle-II starts (2023)

 $\sigma/p_T \sim 1 \%$ (ATLAS) $\sigma/p_T \sim 0.5 \%$ (CMS)

Conclusions

- B-anomalies are pointing to new physics, whose energy scale within reach at ATLAS & CMS
- Broad search programmes for LQ, W' and/or Z'
 - Interpretation performed in the context of B-anom.
- No new physics yet. In the next few years, (I think) we should focus on,
 - Wide ττ resonance search
 - Improve "Boosted object tagging" technique
 - Cross-checking B-anomalies at CMS

²⁸/26

We should not "repeat"²⁹/26 what we did so far ...

