Particle image classification by machine learning

Presenter: Hikari Hirata

Motoko Fujiwara

Members: Tsutomu Fukuda

Seiso Fukumura

Amon Furuichi

Takuro Hasegawa

Hsiang-Yu Huang

Motivation

Reasons to choose Challenge-A;

- (We are beginners of machine learning(ML), and it looks like a little easier than others...)
- Hirata (experimentalist) wants to learn ML of classification, and consider to use it for signal selection of physics analysis.
- Fujiwara (theorist) was wondering how ML identifies particle species.
 (ML is a totally "black box" for me....) "What's happen in that box?"

Data set

Input Data

400000 2D images: simulated particle trajectories in the liquid argon medium

→ train: 200000 image (50 %) test: 200000 image (50 %)

Our Model

CNN: ResNet

(Consists of convolution layers with shortcut connections)

Append input information of a layer to output of the layer.

→ It can solve vanishing gradient (We need your explanation!)

For implementation, use ResNet(10,1,16,[2,2,2,2,2]) in IntroNeuralNetwork.resnet.py (i.e. The same network in Challenge-A-ExampleTrain.ipynb)

Evaluating machine

$$Accuracy = \frac{TP + TF}{TP + FP + FN + TN}$$

Training

• 30000 iterations

• Mean: 0.9618

• STD: 0.0237

(Final values)

|| Best values!

Validation Accuracy

No "Overfitting" during 30000 iterations

Accuracy increases monotonously over time

→ We stop learning at 30000 iterations (due to the time limitation)

Discussions

Our question: When & Why our machine make mistakes?

Summary

We performed the image classification of the particle trajectories with ResNet

- No overfitting during 30000 steps learning
- → How many steps for overfitting?
- ML also make mistakes in { electron vs photon } classification (so as humans...!)
- → How to choose hyperparameter to decrease the loss?
 - Stride, padding value
 - Max Pooling

ES building in Nagoya U.

Thank you!

http://web-honbu.jimu.nagoya-u.ac.jp/fmd/02construction/tatemono/11 es/index.html

Backup

Accuracy Evaluations

Classification performance metrics

How should we compare the classification performance that depends on an interpretation of score (i.e. Q)? This may be application specific, but a standard procedure exists with useful jargons:)

	Label P=1	Label P=0
Prediction Q=1	True Positive (TP)	False Positive (FP)
Prediction Q=0	False Negative (FN)	True Negative (TN)

$$Accuracy = \frac{TP + TN}{TP + FP + FN + TN}$$

False Positive Rate (FPR) =
$$\frac{\text{FP}}{\text{FP} + \text{TN}}$$

True Positive Rate (TPR) = $\frac{\text{TP}}{\text{TP} + \text{FN}}$

We can create a curve of FPR v.s. TPR by varying the score threshold. This is **Receiver Operating Characteristic** (**ROC**) curve. The area under this curve may be used as a performance metric.

