report from Group 2

- Kato and Sato report results and findings from Challenge A : Particle Classification
- Ninomiya introduces his motivation to study ML

Challenge A: Particle classifier

- · Starting from MNIST code, and adopted small difference of data structure.
- Checked how the performance changes according to change of hyper parameters
- Baseline: Num_filters=16 (and doubled for each MaxPooling), three convolution layers A: Num_filters = 32
 B: Put two Conv2d+LeakyReLU before MaxPool2d
 C: MaxPool (4,4) -> (2,2) and 7 convolution layers

Baseline

Model	Accuracy (%)
Baseline	86.9
А	89.9
В	91.6
С	90.5

- All of changes improved the performance.
 - Putting two convolution layers has biggest improvement
- Tried combining A+B+C, but not finished within time..

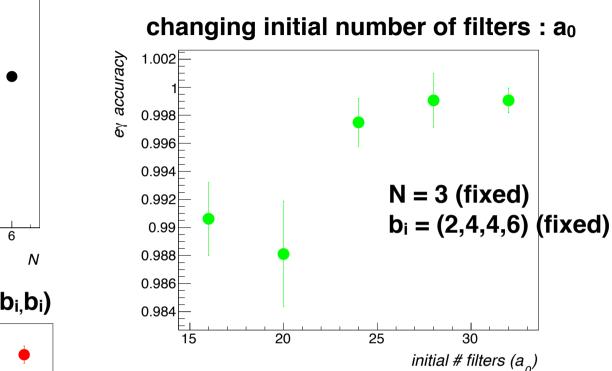
Challenge A

Based on IntroNeuralNetwork/Introduction03-MNIST-CNN I designed _*feature_extractor* like ...

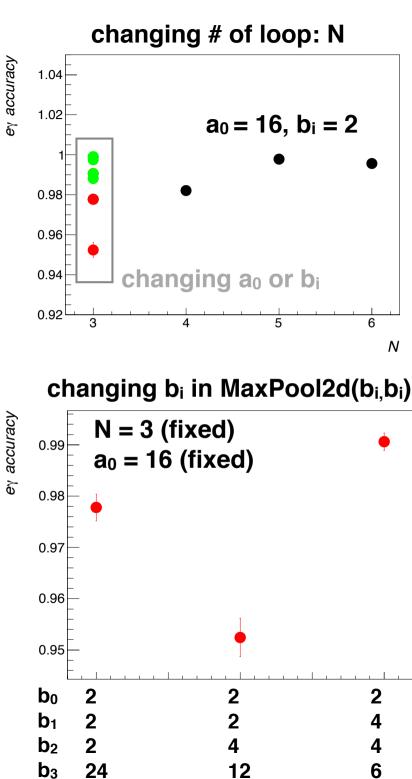
_feature_extractor

* (1 for 0-th loop) repeat N times $conv2D(2^{(i-1)}a_0, 2^{i}a_0, 3) \rightarrow LeakyLeRU() \rightarrow MaxPool2d(b_i, b_i)$ (N+1)-th cycle $\rightarrow conv2D(2^{(N-1)}a_0, 2^{N}a_0, 3) \rightarrow LeakyLeRU() \rightarrow MaxPool2d(b_N, b_N)$ remaining pixels

What I changed


- # repetitions N
- combinations of b_i
- initial # of filters : **a**₀

What I checked


• accuracy of (e,γ) $(N_{ee}+N_{e\gamma}+N_{\gamma e}+N_{\gamma \gamma}) / (N_e^{true}+N_{\gamma}^{true})$

*detector responses for e and y are quite similar

result

- Larger a₀ (i.e., larger discriminants), better accuracy.
- MaxPool2d(b,b) with larger b reduces accuracy.
 - maybe some information are lost

My B4 experiment

Main theme

Increase the accuracy to reconstructing events from image of water Cherenkov radiation at Super-Kamiokande.

Methods

First step Compare $\nu_{\mu}/\overline{\nu_{\mu}}$ identification accuracy of using Maximum likelihood estimation to Neural Network. **Second step** Challenging the main theme!

Leaning in KMI school

I learned basis of Neural Network. In particular, I will refer to code for images in MNIST-solution.