
Report from
#project-group-11

Shenli Tang, Chang Sun, Junhao Yin, Atsuyuki Yamada

Tree based algorithm: Random Forest and Adaboost
Is an ensemble learning method
for classification, regression and
other tasks that operate by
constructing a multitude of
decision trees at training time and
outputting the class that is the
mode of the classes
(classification) or mean/average
prediction (regression) of the
individual trees.

The basic idea of random forest is bagging (bootstrap aggregating). Works for low bias
and high variance data. On the other hand, Adaboost works for high bias and low
variance data, and it is very sensitive to the outliers in the data set.

Random Forest for galaxy classification
Galaxy classification: G
and M20 factors can be
directly measured from
the image of the galaxies.
The boundaries of
different types of galaxies
have been studied.
Random forest will help
us to classify these galaxy
types when new image
data are achieved.

CNN for galaxy classification
CNN is an algorithm based on MLP, it linearize the problems. CNNs work as a feature
extraction machine, and is seen as a geometric data transformer.

Input colored
image of galaxies

binary output merger or
non-merger

convolve with kernels
of merger features

GNN for Neutrino oscillation
Different from CNN, which study on the information locally, GNNs
transfer messages globally.

GNNs are not good choice for classifying galaxies, because we
expect the interaction between different components of a galaxy
should be local, rather than global.

Describe the fraction of different flavors of Neutrinos after travelling
time t in the space.

Project results: NN for particle classification from Sun Chang

Preprocessing:
1. Apply 9*9 average blurring
2. Apply Threshold of 0.16
3. Crop out rectangle enclosing all non-zero

pixels, with edge shift = +10 pixels
4. Bilinear resize cropped image into 64*64,

float32 image

Network Structure is as shown on the right.

Example Workflow, Training Set, ID=3. Avg. cost: 0.31ms*cpu

Some Example Preproced Images

My Network
Trained with batch_size=2.5k, Adam(lr=1e-4).
Constructed by tensorflow keras
Best test_accuracy=92.35%, with test_loss=0.189 at epoch 57.
Performence: ~0.544ms / 1000 samples on GTX1060 6g
Computation cost: ~10^0 M flop

Visualized Training Process
EP57: Best Test Accuracy

Challenge A from Junhao Yin
1. Understand data
2. make a model

a. Just copy from the lecture

3. make a training module
a. Also copy and paste… modify to adapt data here

4. train!

