LHCf and RHICf, collider experiments to reveal the nature of high-energy cosmic rays

Takashi Sako

(KMI/ISEE, Nagoya University)

(Kampert and Unger, Astropart. Phys., 2012)

Interpretation depends on the hadronic interaction model because high-energy CRs are observed through atmospheric air showers

2^{ry} energy flow & air shower

 $v = 14 \text{TeV} \text{ p-p collision} = 10^{17} \text{eV} \text{ proton hitting a proton at rest}$

10¹⁷eV proton shower

✓ Energy flow peaks out of the general purpose central detectors

- \checkmark Air shower structure is determined by the forward particles in the first interaction
- \checkmark LHCf covers near the peak of energy flow

The LHC forward experiment

- ✓ All charged particles are swept by dipole magnet
- ✓ Neutral particles (photons and neutrons) arrive at LHCf
- ✓ η >8.4 (to infinity) is covered

The LHCf Collaboration

^{*,**}Y.Itow, ^{*}Y.Makino, ^{*}K.Masuda, ^{*}Y.Matsubara, ^{*}E.Matsubayashi, ^{***}H.Menjo, ^{*}Y.Muraki, ^{*,**}T.Sako, ^{*}K.Sato, ^{*}M.Shinoda, ^{*}M.Ueno, ^{*}Q.D.Zhou

^{*}Institute for Space-Earth Environmental Research, Nagoya University, Japan ^{**}Kobayashi-Maskawa Institute, Nagoya University, Japan ^{***}Graduate School of Science, Nagoya University, Japan

K.Yoshida Shibaura Institute of Technology, Japan **T.Iwata, K.Kasahara, T.Suzuki, S.Torii**

Y.Shimizu, T.Tamura Kanagawa University, Japan

Waseda University, Japan

N.SakuraiTokushima University, JapanM.HaguenauerEcole Polytechnique, FranceW.C.TurnerLBNL, Berkeley, USAO.Adriani, E.Berti, L.Bonechi, M.Bongi, G.Castellini, R.D'Alessandro,P.Papini, S.Ricciarini, A.Tiberio

INFN, Univ. di Firenze, Italy INFN, Univ. di Catania, Italy

A.Tricomi

13

The LHCf Collaboration

*,**Y.Itow, *Y.Makino, *K.Masuda, *Y.Matsubara, *E.Matsubayashi, ***H.Menjo, *Y.Muraki, *,**T.Sako, *K.Sato, * M.Shinoda, *M.Ueno, *Q.D.Zhou

*Institute for Space-Earth Environmental Research, Nagoya University, Japan **Kobayashi-Maskawa Institute, Nagoya University, Japan ***Graduate School of Science, Nagoya University, Japan

K.Yoshida Shibaura Institute of Technology, Japan T.Iwata, K.Kasahara, T.Suzuki S Tarii

Waseda Ui

INFN, Univ.

Y.Shimizu, T.Tamura Kanagawa N.Sakurai Tokushima M.Haguenauer Ecole Polyte W.C.Turner LBNL, Berk O.Adriani, E.Berti, L.Bonechi P.Papini, S.Ricciarini, A.Tiber INFN, Univ

A.Tricomi

Detector performance

LHCf History

- ✓ 2004 LOI submitted to CERN
- \checkmark 2006 TDR approved by CERN
- ✓ 2009 First data taking at <u>Vs=900GeV p-p</u> collision
- ✓ 2010 <u>Vs=7TeV p-p</u> collision
- \checkmark 2013 $\sqrt{s=2.76TeV p-p \& \sqrt{s_{NN}}=5TeV p-Pb}$ collisions
- ✓ 2015 <u>Vs=13TeV p-p</u> collision
- ✓ 2016 <u>Vs_{NN}=8.1TeV p-Pb</u> collision
- ✓(2017 <u>Vs=510GeV p-p</u> collision as RHICf)

13TeV operation in June 2015

Rate [Hz]

R 3500

FC1 AND FC2

5000

4500

4000

3000 2500

2000

1500 1000 500

0/06-00:00

6月10日

0:00

Analyses

Covered today

- π^0 cross section at 7TeV, comparison with models
- Neutron cross section at 7TeV, comparison with models
- ATLAS-LHCf joint analysis (MC study)
- Vs scaling

Not covered today (see publication list in backup)

- Photon cross sections at 0.9, 7TeV and 13TeV
- π^0 cross section and nuclear effect in 5.02TeV p-Pb collisions

π⁰ p_z spectra in 7TeV p-p collisions (PRD, 94 (2016) 032007)

DPMJET3 and PYTHIA8 overestimate over all E-p_T range

π^0 in 7TeV p-p collision LHCf and models (ratio to data)

Neutrons in 7TeV p-p collision (vs=7TeV p-p; PLB 750 (2015) 360-366)

(~10% of other neutral hadrons at 140m are included both in data and MC)

- ✓ Only QGSJET II explains the characteristic peak near zero degree
- ✓ **DPM** and **PYTHIA** under production at zero degree
- ✓ DPM and PYTHIA not bad at off-zero degree. DPM is best.

- $\checkmark\,$ ~half of LHCf detected particles are produced in diffractive dissociation
- ✓ Fraction and shape of diffraction/non-diffraction are model dependent
- ✓ By classifying LHCf events with ATLAS track information, LHCf can select pure diffractive samples in never explored mass range (ξ_x)

Diffraction@veto

24

Technical feasibility of ATLAS-LHCf analysis

 \checkmark HE neutrons with n_{sel}=0 are produced in the Ultra-Peripheral Collisions

Vs scaling ; π^0

- ✓ Scaling is essential to extrapolate beyond LHC
- ✓ (630GeV −) 2.76TeV − 7TeV good scaling within uncertainties
- ✓ Wider coverage in y and p_T with 13TeV data
- ✓ Wider √s coverage with RHICf experiment in 2017 at √s=510GeV

- ✓ PHENIX explains the result by 1 pion exchange
- ✓ More complicated exchanges at >TeV?
- ✓ LHCf data at 900GeV, 2.76TeV to be analyzed
- ✓ RHICf data at 510GeV will be added in 2017

Feynman scaling, or breaking?

LHCf 2.76TeV and 7TeV data shows Feynman scaling of forward π^0

11

RHICf Installation @STAR interaction point

Why not LHC 900GeV?

Single-spin asymmetry by PHENIX (PRD, 88, 032006, 2013)

- ✓ strong asymmetry in forward neutrons was discovered at RHIC
- ✓ scaled with pT at \sqrt{s} = 62, 200, 500 GeV?

Expected statistics in 12 hours

Photon	Neutron			
uiq su j su j iq su j i i i i i i i i i i i i i i i i i i i		Ne	utron SSA	
$\begin{bmatrix} \overline{0} \\ \overline{0} $		$p_T(GeV)$	N (×10 ³)	δA
		0.0 - 0.1	$2,\!310$	0.0013
		0.1 – 0.2	$2,\!570$	0.0012
		0.2 – 0.3	1,710	0.0015
	° ⋶	0.3 – 0.4	$2,\!190$	0.0014
		0.4 – 0.5	$1,\!210$	0.0018
	0 50 100 150 200 250	0.5 – 0.6	$1,\!130$	0.0019
Energy (GeV) Type I π ⁰	Energy (GeV)	0.6 – 0.7	402	0.0032
		0.7 – 0.8	260	0.0039
		0.8 – 1.2	104	0.0062

- ✓ Luminosity error will be about 5%
- ✓ Special trigger for high energy EM shower is under preparation
- STAR will record events according to the RHICf trigger
 => Fruitful possibilities in joint analyses with central detectors, ZDC, roman pots,...
 32

C-A Operations FY17 December 5, 2016

Γ			FY 2017											
	Program Element	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Γ	AGS-Booster/EBIS Startup (break 12/23 - 1/3)			Dec 12										
Γ	RHIC Cryo scrub & Cooldown to 45 K				Jan 6 —		_		24 we	eks 🔤				
Γ	RHIC Cryo Cooldown/Warm-up					Feb 6 🛶	•	– Feb 9			Jul 21 🛛	→ 4	_Jul 24	
Γ	RHIC Cryo Operation													
Γ	RHIC Cryo off													
	RHIC STAR													
	RHIC Research with $vs = 510 \text{ GeV/n pp}$						3/14/	1	2.5 wks		May 29			
4	RHIC Research RHICf E= 255 GeV/n p						'					June 5		
	RHIC Research with Vs = 62 GeV/n AuAu										8		Jul 7	
Γ	CeC PoP Experiment E= 40 GeV/n Au													
				Nov 11	Nov 30	Dec 22								
	NSRL (NASA Radiobiology)								/tentative/					
						Jan 3 ∡								
Γ	BLIP (Isotopes)					2							← E	nd date?
	BLIP (Other)													
	Shutdown (RHIC)													

LHC p-O/O-O collisions

 \checkmark LHC is TECHNICALLY able to accelerate and collide Oxygen beams

 \checkmark Is nuclear effect in light ion collisions well understood?

 \checkmark In A-A collisions, high multiplicity in the very forward region => new detector is required.

International workshops lead by the KMI members

Series of zero degree workshop held at KMI

- High-Energy Scattering at Zero Degrees (HESZ), 2013
- Workshop on forward physics and high-energy scattering at zero degrees, 2015
 - Joint workshop with the "LHC forward physics working group meeting"
- Workshop on forward physics and high-energy scattering at zero degrees, 2017
 - Joint workshop with the "LHC forward physics working group meeting"

KMI support for a cosmic-ray conference

 2016 International Conference on Ultra-High Energy Cosmic Rays, Kyoto (series started in 2010 from Nagoya)

Summary

✓ LHCf measured forward particles to improve the air shower simulation at 10¹⁷eV

✓ Successful operation at various collisions;

✓ 0.9-13TeV p-p, 5-8TeV p-Pb

✓ 6 papers for physics analysis are published

✓ Construction, operation, analyses are led by the Nagoya members

✓ New experiment, RHICf, started to take data in 2017

✓ Vs scaling (and its break) will be tested in the cosmic-ray equivalent energy range of 10¹⁴eV – 10¹⁷eV

✓ Future plan of LHC p-O, O-O collisions is in investigation
 ✓ Future, future plan to use FCC at 5x10¹⁸eV...

Backup

Publications

physics results

performance results

	Photon (EM shower)	Neutron (hadron shower)	π^0 (limited acceptance)	π ⁰ (full acceptance)	Performance
Beam test	NIM, A671 (2012) 129-136 JINST submitted (2017)	JINST, 9 (2014) P03016			
0.9TeV p-p	PLB, 715 (2012) 298-303				IJMPA, 28
7TeV p-p	PLB, 703 (2011) 128-134	PLB, 750 (2015) 360-366	PRD, 86 (2012) 092001	PRD, 94	(2013) 1330036
2.76TeV p-p			PRC, 89	032007	
5.02TeV p-Pb			065209		
13TeV p-p	In preparation	An			

Event category of LHCf LHCf calorimeters Leading baryon (neutron) Single hadron event Multi meson production photon Single photon event photon π⁰ Pi-zero event (photon pair)

π⁰ at SppS UA7 (630GeV) (UA7; Roman Pot calorimeter!!)

Complimentary phase space coverage to UA7 41

Theoretical explanation

- Pion-a₁ interference: results
 - The data agree well with independence of energy
- The asymmetry has a sensitivity to presence of different mechanisms, e.g. Reggeon exchanges with spin-non-flip amplitude, even if they are small amplitudes

$$A_N \approx \frac{2 \operatorname{Im}(fg^*)}{\left|f\right|^2 + \left|g\right|^2}$$

f : spin non-flip amplitude *g* : spin flip amplitude

FIG. 1: (Color online) Single transverse spin asymmetry A_N in the reaction $pp \to nX$, measured at $\sqrt{s} = 62$, 200, 500 GeV [1] (preliminary data). The asterisks show the result of our calculation, Eq. (38), which was done point by point, since each experimental point has a specific value of z (see Table I).

Kopeliovich, Potashnikova, Schmidt, Soffer: Phys. Rev. D 84 (2011) 114012.

Beam Condition

Parameter	Value	
Beam energy (GeV)	255	
Beam intensity	2×10^{11}	
(protons per bunch)		
Number of colliding bunch	100	
Number of non-colliding bunch	20	
Beam emittance (mm mrad)	20	
β^* (m)	10	to reduce beam divergence
Luminosity $(cm^{-2}s^{-1})$	1.1×10^{31}	
Polarization direction	radial	to measure up-down asymmetry
Polarization amplitude	0.4 - 0.5	
Operation time	1 day	

1day for β* setup, 1 day for polarization direction, 2 days for physics => 1 week near the end of RUN17 including contingency is approved

ECR source

- The source can "deliver anything", however...
 - It takes time to commission the whole chain with new species 16 weeks minimum for LEIR/PS/SPS)
 - Switching between two species within one year is difficult (~ 4 weeks to switch ECR for completely different species)
 -> competition with Pb-Pb and p-Pb in LHC, and primary ions in North Area (Ar, Xe, Pb)
- Oxygen is support gas for Pb
 - One can imagine running O for a short period within Pb year
 - Opens possibility for O-O and p-O
- Other ion mixtures
 - N + O , S + O "Easy"
 - MIVOC (Metal Ions from Volatile Compounds) for Fe...

D.Manglunki

Prospects for light ion collisions in the LHC

Light ion collision@LHC

Disclaimer

- Very preliminary
- Not endorsed by CERN management
- Only technical feasibility
- Even if feasible, scheduling an actual run would be a hard battle

D. Manglunki presented at the workshop: "Results and prospects of forward physics at the LHC: Implications for the study of diffraction, cosmic ray interactions, and more", 11-12 Feb 2013, CERN

All pixelized "Super ZDC"

- ✓ Preliminary study for O-O measurement
- ✓ Multi particle events can be resolved by pixelize the calorimeters
- ✓ 2mm x 2mm pixel calorimeter can separate multi particle events in O-O collisions