# Unexplored regions of WIMP

### Shigeki Matsumoto (Kavli IPMU) Collaborators: Members in IPMU WIMP PROJECT

S. M., S. Mukhopadhyay, Y. L. Sming Tsai, [JHEP 1410 (2014) 155] S. Banerjee, S. M., K. Mukaida, Y. L. Sming Tsai, [JHEP 1611 (2016) 070] S. M., S. Mukhopadhyay, Y. L. Sming Tsai, [PRD94 (2016) 065034]

Purpose of these studies is

to figure out regions of thermal WIMP which are not explored efficiently so far, by analyzing all WIMP-related data,

### WIMP hypothesis

#### WIMP hypothesis

Dark matter is an electromagnetically neutral and stable particle, whose abundance at the present universe is from the freeze-out mechanism,

Solving the Boltzmann equation gives the following behavior of  $n_{WIMP}/s \rightarrow \Omega_{TH}h^2 \sim 0.1 (1pb/<\sigma v)$  $\Omega_{OB}h^2 \sim 0.12 \pm 0.0015$ Freeze-out (reaction vs. expansion) often plays an important role in U.



1/10

Particle Physicists: The mass of WIMP may have the same origin of the EWSB! Experimenters: WIMP must have some interactions with SM particles, so that there exists a lot of opportunities to detect WIMP! Which SM particle(s) does the WIMP interact with?

# Studying WIMP without prejudice

Which interaction exists between WIMP and SM?



Discussing WIMP candidates w/o relying on any specific new physics models!

Classifying WIMPs based on its quantum number is more useful for our purpose. Weak charge plays an important role!!!



2/10

#### WIMPs can be classified into the following three categories.

✓ WIMP has a weak charge of (almost) zero, … Singlet(-like) WIMP

- ✓ WIMP has a weak charge close of (half) integer, … EWIMP
- ✓ WIMP has a mixed weak charge due to EWSB, … Well-tempered WIMP

Let us discuss each WIMP using the simplest example to see what Kind of strategy is (expected to be) taken to detect it at present (future)!





#### @ Colliders

WIMP is expected to be directly produced at colliders, if its energy is high enough. Hadron Collider: Interaction with quarks. Lepton Collider: Interaction with leptons.

#### @ Direct detection

WIMP can be detected by observing release energy by the scattering off a nucleus. SI scattering: Int, with quarks & Higgs. SD scattering: Int, with quarks & Z boson.





#### @ Indirect detection

WIMP could be searched for by observing annihilation products produced at DM halo. Gamma ray: Int. with all the SM particles Cosmic ray: Int. with all the SM particles

# Well-tempered WIMP

4/10

$$\mathscr{L}_{SD} = \mathscr{L}_{kin} - \left[\frac{1}{2}M_SSS + M_DD_1 \cdot D_2 + y_1SD_1 \cdot \tilde{H} + y_2SD_2 \cdot H + H.c.\right]$$

Parameter space are defined by [M<sub>S</sub>, M<sub>D</sub>, y<sub>1</sub> = ycosθ, y<sub>2</sub> = ysinθ].
[DM interactions are assumed to preserve the CP symmetry.]
↓
Scanning parameter space by Likelihood analysis to clarify the current status & future prospects, assuming |y<sub>i</sub>| ≤ 1.

# Well-tempered WIMP

5/10



Direct detection is very powerful to explore the well-tempered WIMP!

Well-tempered WIMP ← YuKawa interactions → DM-DM-h(Z) couplings

The same conclusion is obtained for the most of well-tempered WIMPs, for the origin of the mixing and DM-DM-h(Z) couplings are the same. What we learn: Just waiting future big direct detection experiments!

# EW charged WIMP (EWIMP)

6/10

The simplest example = Fermionic triplet-like WIMP model, Such a WIMP is predated by the split-type SUSY (AMSB).

Minimal content is 3<sub>0</sub>, namely just one representation.
I neutral Majorana and 1 charged Dirac fermion introduced.

> Lagrangian assuming Z<sub>2</sub> symmetry making the WIMP stable is

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{2}\bar{T}\left(\not\!\!\!D - M_T\right)T$$

Parameter space is simply defined by only one parameter M<sub>T</sub>.
Scanning parameter space is simple because of one parameter, [Small mixing effect can be introduced, but it's less significant,]

# EW charged WIMP (EWIMP)

7/10



The WIMP seems difficult to be detected at DD searches in near future. LHC will explore the WIMP mass region below 500GeV.

**IDD searches are promising**, for the WIMP's annihilation is enhanced!!! [The enhancement is from Sommerfeld effect. (Hisano, S.M., Nojiri, 2014.)]

#### $\gamma$ -ray obs. (Fermi. CTA) $\rightarrow$ IDD ( $\gamma$ from dSphs) $\leftarrow$ DM dist. (PSC, PFS)

# Singlet-like WIMP

8/10

> Such a WIMP is predated in many BSM scenarios of EWSB, etc, However, it cannot interact with SM particles, if it is a fermion

Some additional new particle(s) must be introduced connecting WIMP and SM particle, It is called the mediator (portal scenario), Phenomenology of the WIMP depends strongly on the mediator,

> When the mediator is heavier enough than the WIMP and the EW scale, the phenomenology is effectively described by the EFT,

 $\mathcal{L}_{\rm EFT} \supset \frac{c_S}{2\Lambda} (\bar{\chi}\chi) |H|^2 + \frac{c_P}{2\Lambda} (\bar{\chi}i\gamma_5\chi) |H|^2 + \sum_f \frac{c_f}{2\Lambda^2} (\bar{\chi}\gamma^\mu\gamma_5\chi) (\bar{f}\gamma_\mu f) + \frac{c_H}{2\Lambda^2} (\bar{\chi}\gamma^\mu\gamma_5\chi) (H^\dagger i\overleftrightarrow{D_\mu} H)$ 

where A represents the typical mass scale of the mediator. Some simplified models reproducing the EFT are also utilized.

> Parameter space is very complicated, <sup>3</sup> around 10 parameters, ↓ Scanning parameter space using MCMC, assuming CP invariance and the flavor blindness of the WIMP interaction with  $|c_i| \leq 1$ .

# Singlet-like WIMP

9/10



Direct detection is powerful to explore the H- & Z-resonance regions. The four Fermi interactions governs the other region with  $\Lambda < 10m_{DM}$ , [This region is not so much searched for at DD and LHC exps in near future!] LHC results  $\rightarrow$  The four Fermi region  $\leftarrow$  DD (LZ, PICOZ50) results  $\downarrow$ Leptophilic WIMP!

[It is governed mainly by the interactions with leptons.]



10/10

#### $\checkmark$ We discussed (fermionic) WIMPs w/o relying on specific BSMs.

✓ Well-tempered WIMP:

Direct detection searches are (and will be) playing a very important role to explore the WIMP. What we should do is to wait for their results in the near future.

✓ Electroweakly charged WIMP (EWIMP):

It seems to be the most motivated WIMP from the particle physics viewpoint. Indirect detection searches will be the only way to explore the WIMP in near future, requiring a precision determination of WIMP distribution near by us.

#### ✓ Singlet-like WIMP with heavy Mediator:

Because of LHC and direct detection searches, leptophilic region will remain unexplored, Experiments sensitive to WIMP-lepton interactions will be very welcome.

#### ✓ Singlet-like WIMP with light Mediator:

Studies are now on-going by many DM people in the world, via simplified models. Among those, interesting regions are now being reported: Light WIMP in a dark sector, etc.

# Studying WIMP without prejudice

App 1

Is there a framework to study WIMP w/o relying on any specific BSM? After fixing its spin, the WIMP field is written by a linear combination of colorless rep, of  $SU(2)_L \times U(1)_Y$  involving a EM neutral component:

WIMP(x) =  $\sum_{i} z_{i} [\chi_{i}(x)]_{N.C.}$  with  $\sum_{i} |z_{i}|^{2} = 1$ 



### Singlet-Doublet mixed WIMP

App 2





# WIMP in the S-D mixed patch

Minimal contents:  $1_0$ ,  $2_{\frac{1}{2}}$ ,  $2_{-\frac{1}{2}}$  (Anomaly cancel.) Patch coverage:  $|z_S|^2 < 0.95 \& |z_D|^2 < 0.95$  $\checkmark$  Effective lagrangian for the contents is

ADD 4

$$\mathscr{L}_{SD} = \mathscr{L}_{kin} - \left[\frac{1}{2}M_SSS + M_DD_1 \cdot D_2 + y_1SD_1 \cdot \tilde{H} + y_2SD_2 \cdot H + H.c.\right]$$

(Z<sub>2</sub> symmetry is assumed to make WIMP stable.)

Model parameters are (3 neutral Majorana + 1 charged Dirac)
 M<sub>S</sub>: Singlet mass parameter (Corresponding to M<sub>1</sub> in MSSM)
 M<sub>D</sub>: Doublet mass parameter ( " to μ in ")
 y<sub>1</sub>=ycosθ: U-type Yukawa coupling ( " to ycosβ in ")
 y<sub>2</sub>=ysinθ: D-type Yukawa coupling ( " to ysinβ in ")
 ✓ Model parameter space is

 $M_{\rm S} \ge 0, M_{\rm D}, y \ge 0$  and  $\pi/4 \le \theta \le \pi/2$  ( $\tan \theta \ge 1$  or  $0 \le \cot \theta \le 1$ ) **CP invariance is assumed**,  $y \le 1$  **is also assumed in our analysis!** 

8

### Present status in the S-D mixed patch

App 4



### Present status

Present status in the S-D mixed patch

App 4



### Present status

App 4



### Present status

App 4



# After XENON1T

App 4



# After LZ/PIC0250

App 4



Only coannihilation regions survives after O(1)ton level experiments. Indirect DM detections will be very important for  $R_s << 1$  region. Future e<sup>+</sup>e<sup>-</sup> colliders will be very important for  $R_s \sim 1$  region. Direct detection are very powerful to study mixed WIMPs in general!

# WIMP in the Triplet -like patch

Minimal content: 3<sub>0</sub> (1 Majorana + 1 Dirac)
Patch coverage: 1 - 0(v<sup>2</sup>/Λ<sup>2</sup>) < |z<sub>T</sub>|<sup>2</sup> ≤ 1
(Small mixing effects from high-dim operators.)
✓ Effective lagrangian for the content is
L = L<sub>SM</sub> + <sup>1</sup>/<sub>2</sub> T̄ (𝒫 - M<sub>T</sub>) T + (High - dim operators)
(Z<sub>2</sub> symmetry is assumed to make WIMP stable.)
✓ There is only one model parameter M<sub>T</sub>.



. 67

... 8

> Relic abundance limit  $\rightarrow M_T \sim 3$ TeV [Hisano, Matsumoto, Nagai, Saito, Senami, 2007] Direct detection  $\rightarrow \sigma_{SI} \sim 10^{-11}$ pb [LUX; Hisano, Ishiwata, Nagata, 2015] Collider (LHC) limit  $\rightarrow M_T > 270$ GeV [ATLAS; CMS; Ibe, Matsumoto and Sato, 2013] Indirect detection  $\rightarrow M_T > 410$ GeV Wino annihilation is highly boosted! [Hisano, Matsumoto, Nojiri, Saito, 2004] Using  $\gamma$ -ray from dSphs in future!

App 5

# WIMP in the Singlet-like patch



Minimal content:  $1_0$  (One Majorana fermion) Singlet WIMP cannot interact with SM particles by alone because of the  $Z_2$  symmetry making the WIMP stable, so that some other new particle(s) must be introduced. Assuming those are heavy enough, we introduce higher dim, operators,

App 6

Patch coverage:  $1 - O(v^2/\Lambda^2) < |z_S|^2 \leq 1$ Small mixing effects are automatically involved because of the higher-dimensional operators.

✓ Effective lagrangian for the content is

$$\mathcal{L}_{\rm EFT} \supset \frac{c_S}{2\Lambda_S}(\bar{\chi}\chi)|H|^2 + \frac{c_P}{2\Lambda_P}(\bar{\chi}i\gamma_5\chi)|H|^2 + \sum_{f} \frac{c_f}{2\Lambda_f^2}(\bar{\chi}\gamma^{\mu}\gamma_5\chi)(\bar{f}\gamma_{\mu}f) + \frac{c_H}{2\Lambda_H^2}(\bar{\chi}\gamma^{\mu}\gamma_5\chi)(H^{\dagger}i\overleftarrow{D_{\mu}}H) + \frac{c_H}{2\Lambda_$$

Many model parameters, so that we impose simplifying assumptions:

- Common suppression scale  $(\Lambda_i = \Lambda)$  with  $\Lambda > [3 m_{DM}, 300 \text{ GeV}].$
- All coupling constants c<sub>i</sub> are smaller than one.
- Flavor blindness ( $[c_f]_{ij} = c_f$ ) and CP invariance ( $c_P = 0$ ).

# WIMP in the Singlet-like patch

App 6

The EFT description is of limited applicability to discuss WIMP signals at energetic colliders, so that we consider a general simplified model which reproduces the EFT at large intermediate particle mass limits.

$$\mathcal{L}_{\rm EFT} \supset \frac{c_S}{2\Lambda_S}(\bar{\chi}\chi)|H|^2 + \frac{c_P}{2\Lambda_P}(\bar{\chi}i\gamma_5\chi)|H|^2 + \sum_s \frac{c_f}{2\Lambda_f^2}(\bar{\chi}\gamma^\mu\gamma_5\chi)(\bar{f}\gamma_\mu f) + \frac{c_H}{2\Lambda_H^2}(\bar{\chi}\gamma^\mu\gamma_5\chi)(H^\dagger i\overleftrightarrow{D_\mu}H)$$

Using these simplified models to take collider constraints into account!



# Present status in the Singlet-like patch

App 6



### Present status

# Present status in the Singlet-like patch

App 6



### Present status

App 6



### Present status

App 6



# After XENON1T

App 6



# After LZ/PIC0250

App 6



0(10)ton level direct detection cover the H resonance region entirely. The Z resonance region will be widely covered by SD direct detections. The 4-Fermi region has already been restricted to be below  $\Lambda < 10m_{DM}$ . Remaining parameter region is composed mainly of Leptophilic WIMP!