A Theory of $R(D^*)$ and R(D) With Right-Handed Currents

K.S. Babu

Oklahoma State University

Mini-Workshop on "Hints for New Physics in Heavy Flavors" Nagoya University November 15 – 17, 2018 Talk based on the preprint:

"A Theory of $R(D^*)$ and R(D) Anomaly With Right-Handed Currents"

K.S. Babu, Bhaskar Dutta, Rabindra Mohapatra, arXiv: 1811.94496 [hep-ph].

$R(D^*, D)$ Anomaly

• Lepton universality in *B* meson decay has been tested by BaBar, Belle and LHCb recently

BaBar (2012, 2013), Belle (2015, 2016, 2016), LHCb (2015)

• There appears to be a combined 3.8 sigma discrepancy with Standard Model predictions in $R(D^*)$ and R(D)

$$R(D^*) = \frac{\Gamma(B \to D^* \tau \nu)}{\Gamma(B \to D^* \ell \nu)}, \quad R(D) = \frac{\Gamma(B \to D \tau \nu)}{\Gamma(B \to D \ell \nu)}, \quad \ell = e, \mu$$

 $\begin{array}{rcl} R(D^*)^{\rm exp} &=& 0.306 \pm 0.013 \pm 0.007 & R(D^*)_{\rm SM} = 0.258 \pm 0.005 \\ R(D)^{\rm exp} &=& 0.407 \pm 0.039 \pm 0.024 & R(D)_{\rm SM} = 0.300 \pm 0.008 \end{array}$

R(D*): Bernlochner, Ligeti, Papucci, Robinson (2017);
 Jaiswal, Nandi, Patra (2017); Bigi, Gambino, Schacht (2017)
 R(D): FLAG Working Group, Aoki et. al. (2017)

K.S. Babu (OSU)

$R(D^*, D)$ Anomaly (cont.)

• Recently LHCb has released first measurement of the ratio

$$R(J/\psi) = \frac{\mathcal{B}(B_c^+ \to J/\psi\tau\nu)}{\mathcal{B}(B_c^+ \to J/\psi\mu\nu)} = 0.71 \pm 0.17 \pm 0.18$$

which differs from standard model prediction by \sim 2 sigma:

$$R(J/\psi)_{\rm SM} = (0.25 - 0.28)$$

- This strengthens the case for $R(D^*, D)$ anomaly
- There may very well be new physics in the b
 ightarrow c au
 u decay
- This new physics may arise as right-handed currents
- A pre-existing model that solves the strong CP problem without the axion can provide the needed new physics
- Model based on left-right symmetry and a universal seesaw mechanism

Right-Handed Currents and $R(D^*, D)$

 If there is a light (< 100 MeV) sterile neutrino, or if ν_τ is a Dirac fermion, right-handed currents can mediate new B decays induced by W[±]_R gauge bosons:

- With $g_R = g_L$ and no mixing suppression, $R(D^*, D)$ anomaly requires $M_{W_R} \simeq 700$ GeV.
- What type of models can give us such a W_R , consistent with low energy flavor violation and LHC/LEP limits?

K.S. Babu (OSU)

Right-Handed Currents and $R(D^*, D)$

• Assume that the only coupling of W_R^{\pm} relevant for B decay is

$$\mathcal{H}_{eff}\simeq rac{g_R^2}{2M_{W_R}^2}ar{b}_R\gamma_\mu c_Rar{
u}_{ au_R}\gamma^\mu au_R+h.c.$$

Figure: 1 σ and range allowed regions in g_R versus M_{W_R}

•
$$g_R = 2$$
, $M_{W_R} = 2$ TeV can explain $R(D^*, D)$

Phase diagram for $SU(2)_R$

- $SU(2)_R$ gauge coupling $g_R \sim 2$ may appear to be non-perturbative
- SU(2) with $N_f = 6$ is asymptotically free, somewhat similar to QCD
- Phase diagram for SU(2) with $N_f = 6$ has emerged from lattice
- Without Higgs, theory goes to an infrared fixed point $g_*^2\simeq 14.5$
- Higgs field breaks $SU(2)_R$ before this fixed point is reached

K.S. Babu (OSU) $R(D^*, D)$

Other right-handed current models for $R(D^*)$

- This talk will focus of right-handed currents of left-right symmetry
- Other interesting models exist that expalin $R(D^*, D)$ via right-handed currents
- He, Valencia (2013, 2018) suggest a type of left-right symmetry, but only for third family
- Greljo, Robinson, Shakya, Zupan (2018) suggest $SU(2)_R$ under which new fermions transform. Usual third family fermions mix with these new fermions
- Asadi, Buckley, Shih suggest similar idea with $SU(2)_R$ for new fermions with normal fermion mixing with them

イロト 不得下 イヨト イヨト

Left-Right Symmetric Models and $R(D^*, D)$

- Left-right symmetric models are well motivated as they explain Parity violation as a spontaneous phenomenon Pati, Salam (1974); Mohapatra, Pati (1975); Senjanovic, Mohapatra (1975)
- Gauge symmetry is $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$
- ν_R is required to exist in these models, which leads to small neutrino masses via seesaw
- A universal seesaw mechanism for quarks, leptons and neutrinos can be realized in this context Berezhiani (1983), Chang, Mohapatra (1987), Davidson, Wali (1987), Rajpoot (1987), Babu, Mohapatra (1989), (1990)
- Such universal seesaw models can solve the strong CP problem without an axion Babu, Mohapatra (1989), (1990)
- A low mass W[±]_R can explain R(D^{*}, D). The W[±]_R and an accompanying low mass Z_R satisfy LHC and LEP constraints Babu, Dutta, Mohapatra (2018)

K.S. Babu (OSU)

Left-Right Symmetric Models

- Gauge symmetry: $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$
- Fermion assignment:

$$\begin{aligned} Q_{L,i}\left(3,2,1,+\frac{1}{3}\right) &= \left(\begin{array}{c} u_L\\ d_L\end{array}\right)_i, \qquad Q_{R,i}\left(3,1,2,+\frac{1}{3}\right) = \left(\begin{array}{c} u_R\\ d_R\end{array}\right)_i, \\ \psi_{L,i}\left(1,2,1,-1\right) &= \left(\begin{array}{c} \nu_L\\ e_L\end{array}\right)_i, \qquad \psi_{R,i}\left(1,1,2,-1\right) = \left(\begin{array}{c} \nu_R\\ e_R\end{array}\right)_i \end{aligned}$$

• Very simple Higgs sector:

$$\chi_L(1,2,1,+1) = \begin{pmatrix} \chi_L^+ \\ \chi_L^0 \end{pmatrix}, \quad \chi_R(1,1,2,+1) = \begin{pmatrix} \chi_R^+ \\ \chi_R^0 \end{pmatrix}$$

Only 2 physical Higgs bosons: σ_{L,R}

• With this simple Higgs sector, fermion masses cannot be generated $< \square \succ < @ \succ < @ \succ < @ \models < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ⊨ < @ ` < @ ` < @ ` < @ ` < @ ` < @ ` < @ ` < @ ` < @ ` < @ ` < @ ` < @ ` < @ ` < @ ` < @ ` < @ ` < @ ` < @ ` < @ ` < @ ` < @ ` < @ ` < @ ` < @ ` < @ ` < @ ` < ` ` < ` ` < ` ` < ` ` < ` ` < ` ` < ` ` ` ` < ` ` ` < ` `$

K.S. Babu (OSU)

Universal seesaw mechanism

• Vector-like iso-singlet fermions introduced for mass generation:

$$U_a(3,1,1,+\frac{4}{3}), \quad D_a(3,1,-\frac{2}{3}), \quad E_a(1,1,1,-2), \quad N_a(1,1,1,0)$$

Yukawa couplings:

$$\begin{aligned} \mathcal{L}_{\mathrm{Yuk}} &= Y_U \overline{Q}_L \tilde{\chi}_L U_R + Y'_U \overline{Q}_R \tilde{\chi}_R U_L + M_U \overline{U}_L U_R \\ &+ Y_D \overline{Q}_L \chi_L D_R + Y'_D \overline{Q}_R \chi_R D_L + M_D \overline{D}_L D_R \\ &+ Y_E \overline{\psi}_L \chi_L E_R + Y'_E \overline{\psi}_R \chi_R E_L + M_E \overline{E}_L E_R + h.c. \end{aligned}$$

Mass matrices:

$$\mathcal{M}_{U,D,E} = \begin{pmatrix} 0 & Y_{U,D,E}\kappa_L \\ Y_{U,D,E}^{\prime\dagger} & M_{U,D,E} \end{pmatrix} \quad \{\langle \chi_L^0 \rangle = \kappa_L, \quad \langle \chi_R^0 \rangle = \kappa_R \}$$

• Parity symmetry:

 $Q_L \leftrightarrow Q_R, \quad \psi_L \leftrightarrow \psi_R, \quad U_L \leftrightarrow U_R, \quad D_L \leftrightarrow D_R, \quad E_L \leftrightarrow E_R, \quad \chi_L \leftrightarrow \chi_R$

 $\Rightarrow Y_U = Y_U', \quad Y_D = Y_D', \quad Y_E = Y_E', \quad M_U = M_U^{\dagger}, \quad M_D = M_D^{\dagger}, \quad M_E = M_E^{\dagger}$

Parity symmetric mass matrices

• If parity is imposed,

$$\mathcal{M}_{U,D,E} = \begin{pmatrix} 0 & Y_{U,D,E}\kappa_L \\ Y_{U,D,E}^{\dagger}\kappa_R & M_{U,D,E} \end{pmatrix}$$

• Light down-type quark mass matrix:

$$\mathcal{M}_{\rm light}^d = -Y_D \, (M_D)^{-1} \, Y_D^\dagger \, \kappa_L \, \kappa_R$$

- This is universal seesaw mechanism
- $M_{U,D,E}$ need not be hermitian, since P may be broken softly

$$\begin{split} \mathrm{Eg}: Y_D &= y_d \times \mathrm{diag}(1,1,1), \quad M_D = V_R. \, \mathrm{diag}(M_1^d, M_2^d, M_3^d). \, V_L^{\dagger} \\ \Rightarrow M_{\mathrm{light}}^d &= y_d^2 \, V_L \begin{pmatrix} (M_1^d)^{-1} & & \\ & (M_2^d)^{-1} & \\ & & (M_3^d)^{-1} \end{pmatrix} V_R^{\dagger} \, \kappa_L \kappa_R \\ & m_i^d \simeq \frac{y_d^2 \kappa_L \kappa_R}{M_i^d} \end{split}$$

Parity symmetric mass matrices

- V_L and V_R are unrelated since $M_D \neq M_D^{\dagger}$
- $V_L = V_{\rm CKM}$ can be chosen, while

(*i*)
$$V_R = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
, (*ii*) $V_R = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$

• These forms of V_R maximize right-handed contributions to $R(D^*, D)$

- However, if this was the whole story, $W_L W_R$ box diagrams would lead to large $K^0 \overline{K^0}$, $B^0_{d,s} \overline{B}_{d,s}$ and $D^0 \overline{D^0}$ mixing
- These left-right box diagrams are enhanced by a factor of 10^3 compared to SM box diagram, and would require $M_{W_R}/g_R > 2.5$ TeV if $V_L = V_R$
- In the up-quark sector top quark mixes strongly with top-partner *T* quark, which helps solve the FCNC issue

・ロト ・得ト ・ヨト ・ヨト

Partial seesaw in the up-quark sector

- Take the up-quark mass matrix to be block-diagonal
- For up, charm and top quarks, the mass matrices are:

$$\mathcal{M}_{U_i} = \begin{pmatrix} 0 & Y_u^i \kappa_L \\ Y_u^i \kappa_R & M_U^i \end{pmatrix} \quad m_u^i \simeq \frac{(Y_u^i)^2 \kappa_L \kappa_R}{M_U^i} \quad (i = u, c)$$

• t_R and T_R can mix strongly:

$$t_R^0 = c_t t_R + s_t T_R^0, \quad T_R^0 = -s_t t_R^0 + c_t T_R^0, \quad \tan \theta_t = \frac{Y_u^3 \kappa_R}{M_U^3}$$

- The limit $M_U^3
 ightarrow 0$ is possible, whence $\cos heta_t
 ightarrow 0$
- This limit evades all FCNC arising from $W_L W_R$ box diagrams
- An interesting consequence is:

$$M_T/m_t = \kappa_R/\kappa_L \simeq (10 - 15) \Rightarrow M_T = (1.5 - 2.5) \text{ TeV}$$

Suppression of FCNC

• Including $t_R - T_R$ mixing, the W_R^{\pm} couplings to quarks is:

• All $W_L - W_R$ box diagrams highly suppressed in the limit $M_U^3 \rightarrow 0$ (or $c_t \rightarrow 0$) – flipping of t_R with T_R

・ロト ・回ト ・ヨト ・ヨト

Suppression of FCNC (cont.)

Figure: Leading $W_L - W_R$ exchange diagram contribution to $K^0 - \overline{K^0}$ mass splitting in the parity symmetric LR model.

 $H_{\text{efff}}^{LR} = \frac{G_F}{\sqrt{2}} \frac{\alpha}{4\pi s_W^2} \lambda_i \lambda_j 2\eta (x_i x_j)^{1/2} \left[(4 + x_i x_j \eta) I_1(x_i, x_j, \eta) - (1 + \eta) I_2(x_i, x_j, \eta) \right]$ $(\overline{s}_R d_L) (\overline{s}_L d_R)$

$$\begin{split} \eta &= M_{W_L}^2/M_{W_R}^2, \quad x_i = m_i^2/M_{W_L}^2 \text{ for } i = u, c, t, T, \quad \lambda_i \equiv (V_L)_{is}^*(V_R)_{id} \\ \text{As } c_t \to 0, \text{ new contributions to } \mathcal{K}^0 - \overline{\mathcal{K}^0} \text{ mixing vanishes for case (i)} \end{split}$$

Suppression of FCNC (cont.)

- All FCNC processes arising from box diagrams are suppressed
- When $T_R T_L$ flip occurs, the $W_L W_R$ box diagram gives no contribution, as T_L does not couple to W_L
- $B_d \overline{B_d}$ mixing amplitude goes as $V_{cb}V_{ub}m_um_c/M_W^2$, which is negligible
- $B_s \overline{B_s}$ mixing vanishes due to $T_R T_R$ chiral flip
- $D^0 \overline{D^0}$ mixing goes as $V_{ub}V_{cd}m_dm_b$, which yields a value $\Delta M_D \simeq 5 \times 10^{-18}$ GeV
- Such suppression is not available in standard left-right symmetric models

イロト 不得下 イヨト イヨト 二日

Other flavor violating processes

• $\tau_L - E_{3L}$ mixing causes universality violation:

$$\mathcal{L}_{\tau}^{W_L} = rac{g_L}{\sqrt{2}} \cos heta_{ au} \overline{ au}_L \gamma^{\mu}
u_{ au L} W_L^- + h.c.$$

 $A_{\pi} = rac{G_{ au\pi}^2}{G_F^2} = 1 - s_{ au}^2 = 1.0020 \pm 0.0073$

- Using 1 sigma error, this would lead to the bound $s_{\tau} \leq 0.073$, easily satisfied since $s_{\tau} = m_{\tau}/(Y_{\tau}\kappa_R)$ can be as low as 0.001.
- Fermion couplings to Z boson are modified due to f_L F_L mixing denoted as s_f:

$$\mathcal{L}^{Z} = \frac{g}{2c_{W}} \left[\overline{f}_{L} \left\{ T_{3L}^{f} (1 - s_{f}^{2}) - Q_{f} s_{W}^{2} \right\} \gamma^{\mu} f_{L} + \overline{f}_{R} (-Q_{f} s_{W}^{2}) \gamma^{\mu} f_{R} \right] Z^{\mu}$$

• Polarization asymmetry parameters A_b , A_c , A_{τ} are modified

K.S. Babu (OSU

イロト 不得下 イヨト イヨト

Other flavor violation

• Experimental constraints on mixing: $\frac{\delta A_b}{A_{\rm SM}^{\rm SM}} = -0.158 \, s_b^2, \quad \frac{\delta A_c}{A_{\rm SM}^{\rm SM}} = -1.20 \, s_c^2, \quad \frac{\delta A_\tau}{A_{\rm SM}^{\rm SM}} = -12.38 \, s_\tau^2$ $s_b < 0.463, \quad s_c < 0.176, \quad s_\tau < 0.048$ • $7 \rightarrow f\overline{f}$ is modified: $\Gamma(A \to \tau \tau) / \Gamma(Z \to ee) = 1 - s_{\tau}^2 = 1.0019 \pm 0.0032$ \Rightarrow $s_{\tau} < 0.053$ • $R_b = \Gamma(Z \to bb) / \Gamma(Z \to hadron)$ and R_c are modified: $R_b = R_b^{SM}(1 + 0.418s_b^2), \quad R_c = R_c^{SM}(1 + 1.077s_c^2)$

 $s_b \le 0.085, \quad s_c \le 0.127$

• All constraints are easily satisfied, since $s_c, s_b, s_\tau \sim 10^{-3}$ allowed in the model

K.S. Babu (OSU)

Charged Lepton mass matrix

• Various blocks of \mathcal{M}_E take the form:

$$Y_E = \begin{pmatrix} * & * & Y_1^e \\ * & * & Y_2^e \\ * & * & Y_3^e \end{pmatrix}, \quad M_E = \begin{pmatrix} M_{11} & * & * \\ * & * & M_{23} \\ * & M_{32} & * \end{pmatrix}$$

- The * entries are taken to be small. In the limit of * entries going to zero, e, μ, τ masses go to zero
- The leptonic Yukawa couplings Y_i^e may be large, not constrained by m_{e,μ,τ}. Large e_R - E_R mixing possible
- Exact diagonalizing matrix in the limit of * entries being zero:

K.S. Babu (OSU)

Charged Lepton mass matrix

• Definitions:

 $\begin{array}{lll} Y_1^e &=& Y^e \cos \theta, & Y_2^e = Y^e \sin \theta \cos \phi, & Y_3^e = Y^e \sin \theta \sin \phi, \\ \tan \alpha_R &=& \frac{\kappa_R Y^e}{M_{32}}, & \tan \alpha_L = \frac{\kappa_L Y^e}{M_{23}} \end{array}$

• The mass terms read as:

$$\mathcal{L}_{\mathrm{mass}}^{\mathrm{lep}} = M_{11}\overline{E^0}_{1L}E^0_{1R} + \frac{M_{23}}{c_{\alpha_L}}\overline{E^0}_{2L}E^0_{2R} + \frac{M_{32}}{c_{\alpha_R}}\overline{E^0}_{3L}E^0_{3R} + h.c.$$

- If $c_{\alpha_R} \rightarrow 0$ (i.e., $M_{32} \rightarrow 0$), e_R and E_{2R} are flipped
- Such a flip helps with constraints on the model from LEP

・ロン ・聞と ・ヨン ・ヨン … ヨ

Neutrino mass matrix

• Yukawa Lagrangian for the neutral leptons:

 $\begin{aligned} \mathcal{L}_{\text{Yuk}}^{\nu} &= Y_{\nu} \overline{\psi}_{L} \tilde{\chi}_{L} N_{R} + Y_{\nu}' \overline{\psi}_{R} \tilde{\chi}_{R} N_{L} + \tilde{Y}_{\nu} \overline{\psi}_{L} \tilde{\chi}_{L} N_{R}^{c} + \tilde{Y}_{\nu}' \overline{\psi}_{R} \tilde{\chi}_{R} N_{L}^{c} \\ &+ M_{N} \overline{N}_{L} N_{R} + \mu_{L} N_{L}^{T} C N_{L} + \mu_{R} N_{R}^{T} C N_{R} + h.c. \end{aligned}$

• Resulting 12×12 neutrino mass matrix:

$$\mathcal{M}_{\nu} = \begin{pmatrix} 0 & 0 & Y_{\nu}\kappa_L & \tilde{Y}_{\nu}\kappa_L \\ 0 & 0 & Y'_{\nu}\kappa_R & \tilde{Y}'_{\nu}\kappa_R \\ Y_{\nu}^{T}\kappa_L & Y_{\nu}^{\prime T}\kappa_R & \mu_L & M_N \\ \tilde{Y}_{\nu}^{T}\kappa_L & \tilde{Y}_{\nu}^{\prime T}\kappa_R & M_N^{T} & \mu_R \end{pmatrix}$$

• Two neutrinos per family have mass of order M, μ

• Mass of ν_L and ν_R given by

$$m_{
u_R} \sim Y_
u^2 \kappa_R^2/M_N, \quad m_{
u_L} \sim Y_
u^2 \kappa_L^2/M_N$$

Naturally light ν_{τR}, with m_{ν_R}/m_{ν_L} ~ 60, or m_{ν_R} ~ 3 eV. May explain MiniBoone/LSND. (ν_{μ_R} assumed heavier than 100 MeV)

Gauge boson sector

• At tree-level there is no mixing between W_L^{\pm} and W_R^{\pm} . Their masses are:

$$M_{W_L^{\pm}}^2 = \frac{g_L^2 \kappa_L^2}{2}, \quad M_{W_R^{\pm}}^2 = \frac{g_R^2 \kappa_R^2}{2}$$

• In the neutral gauge boson sector, the states (W_{3L} , W_{3R} , B) mix:

$$A^{\mu} = \frac{g_{L}g_{R}B^{\mu} + g_{B}g_{R}W_{3L}^{\mu} + g_{L}g_{B}W_{3R}^{\mu}}{\sqrt{g_{B}^{2}(g_{L}^{2} + g_{R}^{2}) + g_{L}^{2}g_{R}^{2}}}$$

$$Z_{R}^{\mu} = \frac{g_{B}B^{\mu} - g_{R}W_{3R}^{\mu}}{\sqrt{g_{R}^{2} + g_{B}^{2}}}$$

$$Z_{L}^{\mu} = \frac{g_{B}g_{R}B^{\mu} - g_{L}g_{R}\left(1 + \frac{g_{R}^{2}}{g_{R}^{2}}\right)W_{3L}^{\mu} + g_{B}^{2}W_{3R}^{\mu}}{\sqrt{g_{B}^{2} + g_{R}^{2}}\sqrt{g_{B}^{2} + g_{L}^{2} + \frac{g_{B}^{2}g_{L}^{2}}{g_{R}^{2}}}}$$

Gauge boson masses

• $Z_L - Z_R$ mixing matrix:

$$\mathcal{M}^2_{Z_L-Z_R} = rac{1}{2} egin{pmatrix} (g_Y^2 + g_L^2) \kappa_L^2 & g_Y^2 \sqrt{rac{g_Y^2 + g_L^2}{g_R^2 - g_Y^2}} \kappa_L^2 \ g_Y^2 \sqrt{rac{g_Y^2 + g_L^2}{g_R^2 - g_Y^2}} \kappa_L^2 & rac{g_R^4}{g_R^2 - g_Y^2} \kappa_R^2 + rac{g_Y^4}{g_R^2 - g_Y^2} \kappa_L^2 \end{pmatrix}$$

• Gauge couplings related by the embedding

$$\frac{Y}{2} = T_{3R} + \frac{B-L}{2} \Rightarrow g_Y^{-2} = g_R^{-2} + g_B^{-2}$$

• The physical states and their masses are given by:

$$Z_{1} = \cos \xi Z_{L} - \sin \xi Z_{R}, \qquad Z_{2} = \sin \xi Z_{L} + \cos \xi Z_{R},$$

$$M_{Z_{1}}^{2} \simeq \frac{1}{2} (g_{Y}^{2} + g_{L}^{2}) \kappa_{L}^{2}, \qquad M_{Z_{2}}^{2} \simeq \frac{g_{R}^{4}}{g_{R}^{2} - g_{Y}^{2}} \kappa_{R}^{2} + \frac{g_{Y}^{4}}{g_{R}^{2} - g_{Y}^{2}} \kappa_{L}^{2}$$

$$\xi \simeq \frac{g_{Y}^{2}}{g_{R}^{4}} \sqrt{(g_{L}^{2} + g_{Y}^{2})(g_{R}^{2} - g_{Y}^{2})} \kappa_{L}^{2}$$

$$g_{R}^{2} \sqrt{(g_{L}^{2} + g_{Y}^{2})(g_{R}^{2} - g_{Y}^{2})} \kappa_{R}^{2}$$

$$g_{R}^{4} \sqrt{(g_{L}^{2} + g_{Y}^{2})(g_{R}^{2} - g_{Y}^{2})} \kappa_{R}^{2}$$

Collider constraints: LHC and LEP

• Z_R is nearly degenerate in mass with W_R . Its interactions with fermions:

$$\mathcal{L}_{Z_{R}} = \frac{g_{R}^{2}}{\sqrt{g_{R}^{2} - g_{Y}^{2}}} \, \overline{f}_{L,R} \, \gamma_{\mu} \left[T_{3R} - \frac{Y_{L,R}}{2} \, \frac{g_{Y}^{2}}{g_{R}^{2}} \right] f_{L,R} \, Z_{R}^{\mu}$$

• Decay widths for Z_R:

$$\Gamma(Z_R \to \overline{f}f) = \frac{g_R^4}{g_R^2 - g_Y^2} \frac{M_{Z_R}}{48\pi} \beta \left[\frac{3 - \beta^2}{2} a_f^2 + \beta^2 b_f^2\right]$$

$$\beta = \sqrt{1 - \frac{4m_f^2}{M_{Z_R}^2}}, \quad a_f = T_{3R} - \frac{Y_L + Y_R}{2} \frac{g_Y^2}{g_R^2}, \quad b_f = T_{3R} - \frac{Y_R - Y_L}{2} \frac{g_Y^2}{g_R^2}$$

• Decay rates for $Z_R \to W^+W^-$ and $Z_R \to Z + h$ are small

Collider constraints: LHC and LEP

• Branching ratios to various fermions defined as:

$$\begin{split} B_{\ell} &= \frac{\Gamma(e^+e^-) + \Gamma(\mu^+\mu^-)}{\Gamma_{\rm total}}, \quad B_{\tau} = \frac{\Gamma(\tau^+\tau^-)}{\Gamma_{\rm total}}, \quad B_{\nu} = \frac{3\Gamma(\nu_L\bar{\nu}_L) + 3\Gamma(\nu_R\bar{\nu}_R)}{\Gamma_{\rm total}}\\ B_{\rm jet} &= \frac{\Gamma(u\bar{u}) + \Gamma(d\bar{d}) + \Gamma(s\bar{s}) + \Gamma(c\bar{c}) + \Gamma(b\bar{b})}{\Gamma_{\rm total}}, \quad B_t = \frac{\Gamma(t\bar{t})}{\Gamma_{\rm total}} \end{split}$$

g R	B_ℓ (%)	$B_{ au}$ (%)	$B_{ u}$ (%)	$B_{ m jet}$ (%)	B _t (%)	$\frac{\Gamma_{\text{total}}}{M_{Z_R}}$ (%)
1	3.6	3.2	16.9	64.82	11.5	6.85
1.5	3.89	3.82	14.58	65.26	12.42	16.31
2.0	4.08	4.05	13.87	65.27	12.71	29.65
2.5	4.17	4.16	13.56	65.26	12.83	46.80
3.0	4.22	4.22	13.41	65.25	12.90	67.76

• Z_R width rather large, which evades LHC limits. ATLAS and CMS have no searches for $\Gamma/M > 30\%$

K.S. Babu (OSU)

LHC and LEP constraints

• Width of W_R^{\pm} is also rather large:

 $\frac{\Gamma_{\text{total}}}{M_{W_R}}\{7.3\%, 16.4\%, 29\%, 46\%, 66\%\} \text{ for } g_R = (1, 1.5, 2.0, 2.5, 3.0)$

- Searches for W[±]_R have limited Γ/M < 30%. For g_R > 2.0 there is no LHC limit on W[±]_R
- LEP-2 provides important limits on contact interactions:

$$\mathcal{L}_{\rm eff} = -\frac{g_Y^4}{g_R^2 - g_Y^2} \, \frac{1}{M_{Z_R}^2} \, \frac{1}{\{1 + (\Gamma_{\rm total}/M_{Z_R})^2\}^{1/2}} \left[\bar{e}_R \gamma_\mu e_R + \frac{1}{2} \bar{e}_L \gamma_\mu e_L \right] \left[\bar{\mu}_R \gamma^\mu \mu_R + \frac{1}{2} \bar{\mu}_L \gamma^\mu \mu_L \right] \; . \label{eq:left}$$

• Best limit comes from $e^+e^- \rightarrow \tau^+\tau^-$ which gives $\Lambda^-_{RR} > 8.7$ TeV. \Rightarrow

 $M_{Z_R} > \{611,\,634,\,638,\,624,\,598\} ~{\rm GeV} ~~{\rm for} ~~g_R = (1,\,1.5,\,2.0,\,2.5,\,3.0)$

・ロト ・四ト ・ヨト ・ヨト

Allowed regions for $R(D^*, D)$

Figure: LHC allowed regions that explains $R(D^*, D)$ at 1 sigma.

イロト 不得下 イヨト イヨト

Solving the Strong CP problem

• The quark mass matrices are given by

$$\mathcal{M}_{U,D} = \begin{pmatrix} 0 & Y_{U,D} \kappa_L \\ Y_{U,D}^{\dagger} \kappa_R & M_{U,D} \end{pmatrix}$$

- Parity symmetry sets θ_{QCD} to zero
- The determinant of $\mathcal{M}_{U,D}$ is real. Hence $\overline{\theta} = 0$ at tree level Babu, Mohapatra (1990)
- All one-loop corrections to $\overline{\theta}$ vanishes
- $\overline{\theta}$ arises only at two-loop level, and is of order 10^{-10} Babu, Mohapatra (1990), Hall, Harigaya (2018)

One-loop corrections to $\overline{\theta}$

 $\overline{\theta}$ contributions from these diagrams go as ImTr(H) or ImTr(H_1H_2) where H, $H_{1,2}$ are hermitian matrices. These traces are automatically real. $\Rightarrow \overline{\theta}_{1-\text{loop}} = 0$. Induced $\overline{\theta}$ at 2-loop $\sim 10^{-10}_{\text{cont}}$, where $\overline{\theta}_{1-\text{loop}} = 0$.

K.S. Babu (OSU

A complete theory with Parity

- A complete theory with Parity should explain why $g_R \neq g_L$
- One way is to extend gauge symmetry to SU(3)_c × SU(2)_L × SU(2)_R × SU(2)_D × U(1)_{B-L}.
- A scalar field Φ_L(1, 2, 1, 2, 0) spontaneously breaks
 SU(2)_L × SU(2)_D down to its diagonal subgroup SU(2)_{weak}

$$g_w^{-2} = g_L^{-2} + g_D^{-2}$$

Even with $g_L = g_R$, one obtains $g_w \neq g_R$

 The parity partner of Φ_L, a scalar field Φ_R(1, 1, 2, 2, 0), which does not acquire a VEV, can be an interesting dark matter candidate. It has quantum numbers of an inert doublet!

・ロト ・四ト ・ヨト ・ヨト

A Parity asymmetric scenario

- We have developed an interesting scenario which does not have parity symmetry in the same setup
- Flavor violation constraints are readily satisfied by flipping of certain fermions under SU(2)_R
- This model explains $R(D^*, D)$ anomaly consistent with LHC and LEP data
- The fermion mass matrices are given by

$$\mathcal{M}_{U,D,E} = \begin{pmatrix} 0 & Y_{U,D,E}\kappa_L \\ Y_{U,D,E}^{\prime\dagger} & M_{U,D,E} \end{pmatrix}$$

• We choose a specific texture sfor $M_{U,D,E}$, $Y_{U,D,E}$ and $Y'_{U,D,E}$ without restricting $Y'_{U,D,E} = Y_{U,D,E}$

A Parity asymmetric scenario-II

• Specific flavor choice:

$$\begin{array}{lll} Y_U &=& V_L^{\dagger} Y_U^{\rm diag}, \quad Y_U' = V_R^{\dagger} Y_U'^{\rm diag}, \quad M_U = {\rm diag}(0, M_2, 0) \\ Y_D &=& Y_D^{\rm diag}, \quad Y_D' = Y_D'^{\rm diag}, \quad M_D = {\rm diag}(0, 0, M_3) \end{array}$$

$$\begin{array}{l} Y_U^{\rm diag} = {\rm diag}(Y_1^u, Y_2^u, Y_3^u), \ Y_U'^{\rm diag} = {\rm diag}(Y_1'^u, Y_2'^u, Y_3'^u), \\ Y_D^{\rm diag} = {\rm diag}(Y_1'^d, Y_2'^d, Y_3') \ \text{and} \ Y_D'^{\rm diag} = {\rm diag}(Y_1'^d, Y_2'^d, Y_3'^d) \end{array}$$

• V_L is the left-handed CKM matrix, while V_R is to have the form:

$$V_R = \left(\begin{array}{rrrr} 1 & \epsilon_1 & \epsilon_2 \\ -\epsilon_1 & \epsilon_3 & 1 \\ -\epsilon_2 & 1 & \epsilon_4 \end{array}\right)$$

• This choice suppresses all FCNC to adequate level

A Parity asymmetric scenario-III

• Seesaw only works in the b - B and c - C sectors:

$$\mathcal{M}_{c-C} = \begin{pmatrix} 0 & Y_2^u \kappa_L \\ Y_2'^u \kappa_R & M_2 \end{pmatrix}, \quad \mathcal{M}_{b-B} = \begin{pmatrix} 0 & Y_3^d \kappa_L \\ Y_3'^d \kappa_R & M_3 \end{pmatrix}$$

• The light quark masses are then obtained as:

$$m_u = Y_1^u \kappa_L, \quad m_c \simeq \frac{Y_2^u Y_2'^u \kappa_L \kappa_R}{M_2}, \quad m_t = Y_3^u \kappa_L$$
$$m_d = Y_1^d \kappa_L, \quad m_s = Y_2^d \kappa_L, \quad m_b \simeq \frac{Y_3^d Y_3'^d \kappa_L \kappa_R}{M_3}$$

• The heavy quark masses are:

$$\begin{split} M_U &= Y_1'^{\prime u} \kappa_R, \quad M_C \simeq M_2, \quad M_T = Y_3'^{\prime u} \kappa_R \\ M_D &= Y_1'^{\prime d} \kappa_R, \quad M_S \simeq Y_2'^{\prime d} \kappa_R, \quad M_B \simeq M_3 \end{split}$$

• Note: M_U, M_T, M_D, M_S vector-like quarks acquire masses from $SU(2)_R$ breaking VEV κ_R (D^*, C) and Right-Handed Currents (OSU)

A Parity asymmetric scenario-IV

• The W_R^{\pm} interactions with quarks is given by:

$$\mathcal{L}_{W_{R}^{\pm}}^{q} = \frac{g_{R}}{\sqrt{2}} \left(\overline{U}_{R} \ \overline{c}_{R} \ \overline{T}_{R} \right) \gamma_{\mu} V_{R} \begin{pmatrix} D_{R} \\ S_{R} \\ b_{R} \end{pmatrix} W_{R}^{+\mu} + h.c.$$

• With the form of V_R chosen, there are no $W_L - W_R$ box diagrams for meson-antimeson mixing

Figure: Dominant diagrams inducing $\Delta F = 2$ interactions such as $K^0 - \bar{K^0}$ mixing in the LR parity asymmetric quark seesaw model.

Parity asymmetric leptonic sector

- In the charged lepton sector, the mass matrices are chosen as: $Y_E = \operatorname{diag}(Y_1^e, Y_2^e, Y_3^e), \quad Y'_E = \operatorname{diag}(Y_1'^e, Y_2'^e, Y_3'^e), \quad M_E = \operatorname{diag}(0, 0, M_E)$
- Only $au E_3$ mix via the mass matrix

$$\mathcal{M}_{\tau-E_3} = \begin{pmatrix} 0 & Y_3^e \kappa_L \\ Y_3'^e \kappa_R & M_E \end{pmatrix}$$

• Heavy and light lepton masses are:

$$m_e = Y_1^e \kappa_L, \quad m_\mu = Y_2^e \kappa_L, \quad m_\tau \simeq \frac{Y_3^e Y_3'^e \kappa_L \kappa_R}{M_E}$$
$$M_{E_1} = Y_1'^e \kappa_R, \quad M_{E_2} = Y_2'^e \kappa_R, \quad M_{E_3} \simeq M_E$$

• This structure leads to the leptonic interactions of W_R given by

$$\mathcal{L}_{W_{R}^{\pm}}^{\ell} = \frac{g_{R}}{\sqrt{2}} \left(\overline{E}_{1R} \ \overline{E}_{2R} \ \overline{\tau}_{R} \right) \gamma_{\mu} \begin{pmatrix} \nu_{e_{R}} \\ \nu_{\mu_{R}} \\ \nu_{\tau_{R}} \end{pmatrix} W_{R}^{-\mu} + h.c.$$

Collider constraints: P asymmetric scheme

g _R	B_{ℓ} (%)	$B_{ au}$ (%)	B_{ν} (%)	$B_{ m jet}$ (%)	B_t (%)	$\frac{\Gamma_{\text{total}}}{M_{Z_R}}$ (%)
1	1.89	6.6	35.4	54.98	1.07	3.3
1.5	0.349	8.55	32.6	58.25	0.20	7.3
2.0	0.11	9.2	31.5	59.11	0.061	13
2.5	0.043	9.4	30.97	59.5	0.024	20.5
3.0	0.021	9.65	30.67	59.6	0.011	29.6

Table: Values of the branching ratios of Z_R for decays into fermion pairs as a function of g_R in the Parity asymmetric scenario. B_x 's are defined in Eq. (0.1). The last column lists the total width of Z_R as a fraction of its mass.

Here Γ/M does not exceed 30%

Z_R Production rate

<i>g</i> _R	$M_{Z_R}(\text{TeV})$	$\sigma(fb)$		
1.0	1.0	0.8		
1.5	1.5	$5.2 imes10^{-2}$		
2.0	2.0	$7 imes 10^{-3}$		
2.5	2.5	$1.2 imes10^{-3}$		
3.0	3.0	$2.5 imes10^{-4}$		

Table: Z_R production cross-section at the LHC for the Parity asymmetric scenario

These rates are consistent with LHC constraints

Combined allowed region for $R(D^*, D)$

Figure: LHC allowed regions in the Parity asymmetric case.

K.S. Babu (OSU)

39 / 42

- 4 同 6 4 日 6 4 日 6

Boundedness of Higgs potential

• Higgs potential of the model:

$$V = -(\mu_L^2 \chi_L^{\dagger} \chi_L + \mu_R^2 \chi_R^{\dagger} \chi_R) + \frac{\lambda_{1L}}{2} (\chi_L^{\dagger} \chi_L)^2 + \frac{\lambda_{1R}}{2} (\chi_R^{\dagger} \chi_R)^2 + \lambda_2 (\chi_L^{\dagger} \chi_L) (\chi_R^{\dagger} \chi_R)^2$$

• Physical Higgs spectrum obtained from:

$$\mathcal{M}_{\sigma_{L,R}}^2 = \begin{bmatrix} 2\lambda_{1L}\kappa_L^2 & 2\lambda_2\kappa_L\kappa_R\\ 2\lambda_2\kappa_L\kappa_R & 2\lambda_{1R}\kappa_R^2 \end{bmatrix}$$

Boundedness conditions:

$$\lambda_{1L} \ge 0, \quad \lambda_{1R} \ge 0, \quad \lambda_2 \ge -\sqrt{\lambda_{1L}\lambda_{1R}}$$

• RGE for λ_{1R} given by:

$$\begin{split} &16\pi^2 \frac{d\lambda_{1R}}{dt} = 12\lambda_{1R}^2 + 4\lambda_2^2 - \lambda_{1R}(3g_B^2 + 9g_R^2) + \frac{3}{4}g_B^4 + \frac{3}{2}g_B^2g_R^2 + \frac{9}{4}g_R^4 + \\ &\lambda_{1R} \mathrm{Tr} \left(3Y_U^{\dagger\dagger}Y_U' + 3Y_D^{\prime\dagger}Y_D' + Y_E^{\prime\dagger}Y_E' \right) - 4\mathrm{Tr} \left(3(Y_U^{\dagger\dagger}Y_U')^2 + 3(Y_D^{\dagger\dagger}Y_U')^2 + (Y_E^{\dagger\dagger}Y_E')^2 \right) \end{split}$$

• For λ_{1R} not to turn negative for an order of magnitude above κ_R , $M_F < 2.5$ TeV is required (SS) $R(D^*, D)$ and Right-Handed Currents 40

Astrophysics and Cosmology

- Light sterile neutrino involved in *B* meson decay can affect supernova dynamics
- If produced inside, it should either be trapped, or cross section should be small
- Only neutral current processes are effective: $e^+e^-
 ightarrow
 u_R \overline{
 u}_R$

$$\sigma(e^+e^- \to \overline{\nu}_R \nu_R) = \left(\frac{5}{16}\right) \frac{1}{48\pi} \frac{g_Y^4 g_R^4}{(g_R^2 - g_Y^2)^2} \frac{s}{M_{Z_R}^2}$$

• Demanding energy loss in ν_R , $Q(\nu_R)$ is not larger than $20Q(\nu_L)$ yields:

 $(239 - 429) \text{ GeV} \le M_{Z_R} \le (748 - 3890) \text{ GeV} \quad (g_R = 2)$

• For BBN, if ν_R decouples from plasma before QCD transition, it will contribute $\Delta N_{\nu} \simeq 0.1$, which is acceptable

K.S. Babu (OSU)

Conclusions

- Right-handed currents mediated by W_R gauge boson of left-right symmetry can explain $R(D^*, D)$ anomaly
- Universal seesaw scheme suppresses other flavor violation processes
- W_R must lie in the range 1.2 (1.8) TeV $\leq M_{W_R} \leq 3$ TeV for *P*-asymmetric (symmetric) scenario
- The Parity symmetric model solves the strong CP problem without an axion
- Vector-like top partner is predicted to be in the mass range $M_T = (1.5 2.5)$ TeV with Parity symmetry
- Several vector quarks acquire mass from SU(2)_R breaking VEV in the P-asymmetric scenario. These quarks must have mass < 2.5 TeV
- Rich spectrum to be explored at LHC and SuperB factory