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Machine Learning Applications at Belle II 

• Charge Particle Identification 

• Clustering, Cluster position, Cluster 
direction 

• Neutral hadron/photon separation 

• Image calibration 

• Full Event Interpretation 

• Flavour Tagging 

• Disclaimer: Work from many collaborators 
is also presented

Contents

Use case @ Belle II (Torben Ferber) �4

Overview Machine Learning at Belle II at DESY
• Physics analysis (NNs, BDTs) 

• Full Event Interpretation (FEI) 

• Adversarial approaches (bump hunts ↔ true mass, precision physics ↔ correlations) 

• Electromagnetic calorimeter (NNs) 

• Energy and position reconstruction 

• Charged and Neutral Particle Identification (PID) 

• Calibration 

• Seedless clustering  

• Photon direction/displaced photons  

• Tracking (BDTs)



Introduction To Belle II
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Map of Flavour Physics 
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Use case @ Belle II (Torben Ferber) �2

Belle II in Japan
• Intensity frontier flagship 

experiment: 30kHz event rate. 

• 750+ researchers from 30 
countries. 100+ from Germany, 
~20 from DESY  (incl. 1 Helmholtz 
YIG and 1 Helmholtz W2). 

• Precision physics and searches for 
(very) rare decays including Dark 
Matter.

5

The Belle II Experiment

• ~900 researchers from 30 countries, with 
100+ from Germany, ~50 from DESY 

• Intensity frontier flagship “B-factory” 
experiment: 30kHz event rate 

• Precision physics and searches for (very) 
rare decays including Dark Matter  

• First data taken 2018, data taking 
ongoing

Pushing the intensity frontier to the next level
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Belle II Experiment
KEK, Tsukuba

 First results from Belle II  (Torben Ferber) 12

KEK in Tsukuba (Japan)

SuperKEKB

Linac

Belle II

Bormio (~7000km)

Tokyo (~50 km)

Tsukuba
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SuperKEKB

•

 First results from Belle II  (Torben Ferber) 13

SuperKEKB
• Asymmetric (4.0 GeV/7.0 GeV) e+e- 

collider, sqrt(s) = 10.58 GeV 

• Large crossing angle of 83mrad 

• Major upgrade to the accelerator 
with 40× the KEKB design luminosity 
(8x1035 cm-2s-1) 

• 2× higher beam currents 

• 20× smaller beam spot (σy=50 nm):  
“Nano-beam scheme” 

• Ultimate goal: 50ab-1 (50× Belle)

 Searches for Dark Matter at Belle II  (Torben Ferber) �5
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SuperKEKB
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Belle II

KL and muon detector (KLM): 
Resistive Plate Counters (RPC) (outer barrel) 
Scintillator + WLSF + MPPC (endcaps, inner barrel)

Particle Identification (PID): 
Time-Of-Propagation counter (TOP) (barrel) 
Aerogel Ring-Imaging Cherenkov Counter (ARICH) (FWD)

Electromagnetic calorimeter (ECL): 
CsI(Tl) crystals 
waveform sampling (energy, time, pulse-shape)

Vertex detectors (VXD): 
2 layer DEPFET pixel detectors (PXD, partially installed) 
4 layer double-sided silicon strip detectors (SVD)

Central drift chamber (CDC): 
He(50%):C2H6 (50%), small cells,  
fast electronics

Magnet: 
1.5 T superconducting

DEPFET: depleted p-channel field-e"ect transistor 
WLSF: wavelength-shifting fiber 
MPPC: multi-pixel photon counter

e+ (4 GeV)

e- (7 GeV)

   Trigger: 
   Hardware: < 30 kHz 
    Software: < 10 kHz

8

Belle II
Detector
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Physics Case 
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Motivation

• The Standard Model (SM) is very 
successful in describing the world at 
particle level 

• Although many questions remain 
unanswered  

• Why do we have three generations of 
leptons and quarks? Hierarchy, masses, 22 
free parameters … 

• Almost all SM predictions seem to fit 
experimental data precisely… Almost?

Introduction Flavor Anomalies Lepton Flavor Universality Discussion and Outlook Lepton Flavor Universality & Rare B Decays

Particle Physics Today

Credit: W. Altmannshofer, The Flavor Puzzle

I Can we find New Physics to understand the structure of the SM ?

I With flavor physics we soon might be a step closer..

Simon Wehle (Deutsches Elektronen-Synchrotron) 5
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The Flavour Anomalies
(maybe only “local” anomalies… )
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The Flavour Anomalies
(maybe only “local” anomalies… )

Introduction Angular Analysis Search for B+ ! K+⌧+⌧� Resume Disputation Simon Wehle

Apropos Lepton Flavor Non-Universality

⌧ vs. µ

RD⇤ ⌘
B(B0

! D⇤+⌧�⌫̄⌧ )
B(B0 ! D⇤µ�⌫̄µ)

e vs. µ

RK ⌘
B(B+

! K+µµ)
B(B+ ! K+ee)

Simon Wehle (Deutsches Elektronen-Synchrotron)
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Introduction Flavor Anomalies Lepton Flavor Universality Discussion and Outlook Lepton Flavor Universality & Rare B Decays

Flavor Anomalies

> 3.5� enhanced B ! D
(⇤)⌧⌫ rates

3.3� suppressed branching ratio of Bs ! �µ+µ�

⇠ 3� tension between inclusive and exclusive determination of |Vub|
⇠ 3� tension between inclusive and exclusive determination of |Vcb|
> 3� anomalies in angular distributions of B ! K

⇤``

2.6� lepton flavor non-universality in B ! K
(⇤)µ+µ� vs. B ! K

(⇤)
e
+

e
�

Same effective couplings
(Wilson Coefficients C7,9,10)

Simon Wehle (Deutsches Elektronen-Synchrotron) 13
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The b→s transition 

W±

Z′ ?
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The b→s transition 

W±

Z′ ?

s̄

dd

b̄

W−

γ, Z0
"−

"+

ū, c̄, t̄

B0 K∗0

Introduction Angular Analysis Search for B+ ! K+⌧+⌧� Resume Disputation Simon Wehle

Focus on Flavor Changing Neutral Currents

s̄

dd

b̄

`�

`+

ū, c̄, t̄

⌫`

W+ W�

K⇤0B0

(c) SM example

s̄

dd

b̄

`�

`+

K⇤0B0

Z 0

(d) NP example

I In my thesis I analyzed b ! s`` in the decay of B ! K (⇤)`+`�

I In all three lepton modes:

e, µ An angular analysis of B0
! K⇤(892)0`+`�

⌧ Upper limit to B+
! K+⌧+⌧�

Simon Wehle (Deutsches Elektronen-Synchrotron) 6

ℬSM(b → sℓℓ) = 𝒪(10−6)

sensitive to TeV scale in loops
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B→K*ll Analysis at Belle

• Similar electron and muon performance 

• limited statistics 

• Neural network based reconstruction in 
order to maximise efficiency 

Belle Analysis

2.4. Background Suppression Strategy

Figure 2.2.: Veto regions for charmonium background for the di-electron (right) and di-
muon (left) channels.

�E of around zero. Candidates are selected satisfying 5.22 < Mbc < 5.3 GeV/c2 and 182

�0.10 (�0.05) < �E < 0.05 GeV for ` = e (` = µ). 183

Large contributions of irreducible background arises from charmonium decays B ! K(⇤)J/ 184

and B ! K(⇤) (2S), where the cc̄ state decays into two leptons. These decays own the same 185

signature as the desired signal and are vetoed with cuts on the invariant mass of the lepton 186

pair 187

�0.25 GeV/c2 < Mee(�) � MJ/ < 0.08 GeV/c2, (2.3)

�0.15 GeV/c2 < Mµµ � MJ/ < 0.08 GeV/c2, (2.4)

�0.20 GeV/c2 < Mee(�) � M (2S) < 0.08 GeV/c2 and (2.5)

�0.10 GeV/c2 < Mµµ � M (2S) < 0.08 GeV/c2. (2.6)

These veto regions are displayed in fig. 2.2. In the electron case, additionally photon energies 188

of detected photons from the bremsstrahlung recovery process are added. 189

Di-electron background can also arise from photon conversion � ! e+e� and ⇡0 Dalitz decays 190

(⇡0 ! e+e��). In order to eliminate this source of background the constraint Me(�)e(�) > 191

0.14 GeV/c2 is required. 192

For the B meson candidates, a vertex fit is performed, from which the �2 probability is used 193

for background suppression and also to define the distance between the two leptons along the 194

beam direction �z``. 195

All cuts and vetoes are listed in table 2.5. 196

2.4. Background Suppression Strategy 197

Multivariate data analysis techniques are used to combine all available information of a B 198

meson candidate in order to separate signal from background. 199

A hierarchical framework of neural networks is used in the reconstruction, starting in the first 200

stage with the primary particles from tracks (e, µ, K±, and ⇡±) and the neutral particles 201

(KS ,⇡0 and �). In the second step combinations to K⇤ particles are performed and in the 202

last stage the final B meson candidates are constructed. 203

In each stage, all particle candidates are analyzed with a neural network (NeuroBayes [11]) and 204

an output NBout is assigned. This output is chosen to correspond to a Bayesian probability 205

in the range [0, 1] where 1 corresponds to the candidate being true signal. In this manner a 206

7 Draft from March 5, 2019

2. Reconstruction of B ! K(⇤)`+`� 90

This analysis covers the muon and electron modes of b ! s`+`� with the reconstruction 91

of B ! K(⇤)`+`�. In total 8 decay modes are exclusively reconstructed in 12 final state 92

configurations. This chapter details the reconstruction procedures and background suppression 93

methods. The final analysis is performed only on the data of the K⇤ modes. The pseudoscalar 94

meson modes are reconstructed and can later used for branching ratio measurements and are 95

needed for evaluation of cross-feed backgrounds. 96

In a first stage we apply particle selection criteria based on kinematic observables and particle 97

identification variables. In the event selection loose cuts are applied on masses and energies 98

to exclude unphysical regions for B ! K(⇤)`+`� and vetoes are applied to remove irreducible 99

sources of background. Finally, the candidates are selected based on neural network selection 100

including a variety of information from tracks to event shape observables. 101

2.1. Analysis Overview 102

The decay B ! K(⇤)`+`� is reconstructed exclusively in 12 final states, where ` = e, µ. An 103

overview of the used decay channels is given in table 2.1. The charged conjugated (cc.) mode 104

is always implied if not explicitly stated otherwise. In the analysis the quality of all constituents 105

of the final B candidate are gathered as a multivariate probability at the final stage of the 106

reconstruction. The procedures and data analysis tools used are explained in section 2.4. In 107

case of multiple candidates per event, the decay channel with the highest probability is selected. 108

Table 2.1.: Decay channels of the exclusive reconstruction of B ! K(⇤)`+`�, where l = e, µ
and cc. is implied.

B+ B0

B+
! K⇤+(K+⇡0)`+`� B0

! K⇤0(KS⇡0)`+`�

B+
! K⇤+(KS⇡+)`+`� B0

! K⇤0(K+⇡�)`+`�

B+
! K+`+`� B0

! KS`+`�

2.1.1. Data 109

This analysis is performed on the full Belle dataset corresponding to 711 fb�1. Beforehand 110

the analysis is performed on simulated data where both the o�cial Belle generic MC is used, 111

which does not contain the signal modes, and dedicated sets of signal MC are generated. 112
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FIG. 1. Results of the signal yield fit to the Mbc distributions
for the electron (left) and muon (right) channel for q2 > 0.045
GeV2/c4. Combinatorial (dashed blue), signal (red filled),
charmonium leakage (dashed green), peaking (purple dotted)
and total (solid) fit distributions are superimposed on data
(points with error bars).

is measured to be 1.015 ± 0.025 ± 0.038, where the first
error is statistical and the second due to uncertainty on
data-MC corrections for lepton identification. This cross
check neglects contributions from the B ! K⇤`` channel
in the J/ control region. The input distributions used
by the top-level neural network classifiers in data and MC
are compared, and no statistically significant di↵erences
are found. In order to estimate uncertainty due to the
classifier response, the B ! J/ K⇤ branching fraction is
obtained in bins of the classifier output and compared to
the nominal result. The obtained di↵erences are propa-
gated as weights to data in all fits to Mbc distributions,
and changes in the resulting signal yields are taken as sys-
tematic uncertainties. Further uncertainties arise from
tracking e�ciency and limited MC statistics. E↵ects due
to migration of events between di↵erent q2 regions are
studied using MC events and found to be negligible. In
case of results for the full region of q2 > 0.045 GeV2/c4,
di↵erent veto regions for the electron and muon channels
need to be accounted for in the determination of recon-
struction e�ciency. This introduces model dependence
to our signal simulation, which uses form factors from
Ref. [20]. All systematic uncertainties described above
are listed in Table I.

In the range q2 > 0.045 GeV2/c4 we find 103.0+13.4
�12.7

(139.9+16.0
�15.4) events in the electron (muon) channels. Ex-

ample fits are presented in Figure 1. Using the fitted
signal yields we construct the lepton flavour universality
ratio RK⇤ in all signal channels, combined and separately,
for the B0 and B+ decays, RK⇤0 and RK⇤+ . Our mea-
surement of RK⇤+ is the first ever. Results are shown in
Table II and Figure 2. All measured values are consistent
with the SM expectation [21, 22]. In light of past mea-
surements of b ! s`+`� mediated decays, predictions for
RK⇤ suggest values smaller than unity in the presence
of new physics [22]. The upcoming Belle II experiment
[23, 24] is expected to record a 50 times larger data sam-

ple than Belle, which will help clarify the role of physics
beyond the SM in b ! s`+`� transitions.
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Most simple approach: Ratio of Branching Ratios

• Measurements in accordance with 
the SM 

• First measurement of RK*+

After Moriond

arXiv:1904.02440

8

TABLE II. Result for RK⇤ , RK⇤0 and RK⇤+ . The first un-
certainty is statistical and the second is systematic.
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Belle 1 Angular Analysis
Results

B ! K
⇤� B ! h

(⇤)⌫⌫̄ B ! K
⇤`+`� Rare decays at Belle

Result P0
5

- Result for Combined Data

I Measurements are compatible with the SM

I Similar central values for the P
0
5 anomaly with 2.5� tension

Simon Wehle (Deutsches Elektronen-Synchrotron) 17

• LHCb sees the largest 
deviation in the low q2 
region 

• Atlas and Belle can confirm 
the anomaly with less 
significance 

• CMS is in good agreement 
with SM
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Flavour Anomalies in b->sll
New Physics or systematic problem?

Introduction Lepton Flavor Universality Discussion and Outlook Lepton Flavor Universality & Rare B Decays

The Flavor Anomalies Overview - Branching Ratios

From Justine Serrano EPS2017

Simon Wehle (Deutsches Elektronen-Synchrotron) 7

B ! K
⇤� B ! h

(⇤)⌫⌫̄ B ! K
⇤`+`� Rare decays at Belle

Result P0
5

- Result for Combined Data

I Measurements are compatible with the SM

I Similar central values for the P
0
5 anomaly with 2.5� tension

Simon Wehle (Deutsches Elektronen-Synchrotron) 17

Introduction Angular Analysis Search for B+ ! K+⌧+⌧� Resume Disputation Simon Wehle

Resume - The Bigger Picture

I Look across all different measurements of
b ! s`+`�

I Short distance effects can be described by
Wilson Coefficients Ci

I C7,9,10 important for b ! s`+`� processes

I FL from Atlas and LHCb

I AFB from Atlas and LHCb

I RK from BaBar and LHCb

I Branching ratios for b ! s`+`�

I P0
5...

! constrain Wilson Coefficients Ci across measurements and experiments

I Global fit

I Fit NP contribution

C9 = C
SM
9 + C

NP
9

I 4.5� deviation in C9 from SM
S. Descotes-Genon et al.
arXiv:1605.06059v1

Simon Wehle (Deutsches Elektronen-Synchrotron) 32

Combined Fit to all  
available measurements
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The neutrino case
Golden mode for Belle II
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The neutrino case
Golden mode for Belle II

‣ Sensitive to similar NP as tension in C9: 
• b→s transition shows signs of NP 

‣ Theoretically very clean (no charm loops)
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The neutrino case
Golden mode for Belle II

EW

‣ Sensitive to similar NP as tension in C9: 
• b→s transition shows signs of NP 

‣ Theoretically very clean (no charm loops)



Event Interpretation



Machine Learning at the Belle II Experiment | Simon Wehle | 05.02.2020 20

Experimental Setup for Belle II 
Advantages at e+e- colliders
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Experimental Setup for Belle II 
Advantages at e+e- colliders

⌫`

`+

signal side

tag side

K+

⇡0

⌥(4S)

B

B

e+ e�

P⌫` = Pe+e� � PBtag
� P`+

Hadronic Tag ✏ = O(0.3)%

Semileptonic Tag ✏ = O(1)%

Inclusive Tag ✏ = O(100)%

E
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Belle already employed Full Reconstruction (FR) 
successfully.
Belle II: Full Event Interpretation (FEI): more 
inclusive, more automation and analysis-specific 
optimizations.
Hierarchical approach
• A multivariate classier (MVC) is trained for final-

state particle candidates and intermediate 
particle candidates classification.

• The MVC is trained for each employed decay 
channel. 

• Combine all information into a single value, the 
signal-probability.

FEI can unify the hadronic and semi-leptonic and 
inclusive tagging into a single algorithm.  

Full Event Interpretation (FEI)

4

Tag-side efficiency:
21

Missing Energy Channels

• Hierarchical approach 

• Multivariate classifier for each state 

• Gather all information in the signal 
probability 

• FEI can provide hadronic and 
semileptonic final states

Full Event Interpretation (FEI)

Tag Side Btag: Result

Maximum reconstruction efficiency

Tag FR @ Belle FEI @ Belle FEI @ Belle II

Hadronic B+ 0.28 % 0.49 % 0.61 %
Semileptonic B+ 0.67 % 1.42 % 1.45 %

Hadronic B0 0.18 % 0.33% 0.34 %

Semileptonic B0 0.63 % 1.33% 1.25 %

Thomas Keck – B2TauNu 21.04.2017 10/20
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Improving the sensitivity: 
Deep Full Event Interpretation
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Deep Full Event Interpretation
Similar to Inclusive Tagging Approach

Deep Full Event Interpretation

⌥(4S)

B

B

e+ e�

{Track 1 

… 

Track N
Gather Information of each Rest of event Track 
• Track parameters, Energy, Momentum 
• Particle Identification Information
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Deep Full Event Interpretation
Similar to Inclusive Tagging Approach

⌫`

`+

signal side

Deep Full Event Interpretation

⌥(4S)

B

B

e+ e�

{Track 1 

… 

Track N
Gather Information of each Rest of event Track 
• Track parameters, Energy, Momentum 
• Particle Identification Information
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Deep Full Event Interpretation
Dense Deep Neural Network

Deep Full Event Interpretation
B{Track 1 

… 

Track N
Gather Information of each Rest of event Track 
• Track parameters, Energy, Momentum 
• Particle Identification Information

Track  2 → { 1 : Signal

0 : Background
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Deep Full Event Interpretation
Convolutional Neural Network

Deep Full Event Interpretation
B{Track 1 

… 

Track N
Gather Information of each Rest of event Track 
• Track parameters, Energy, Momentum 
• Particle Identification Information

Track  2 → { 1 : Signal

0 : Background
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First Results

• Result on simulated data: 

• Order of magnitude better Performance 

• Only slight loss of information on the tag 
candidate  

• Many “golden modes” for Belle II need tagging 

• The baseline of the traditional tagging 
methods is ~1%  

• Detailed constrain of tag-side 4-vector lost 

• Improvements of only a few percent to the 
method can increase the statistics 
corresponding to years of data taking!

Study performed for an example rare decay of B mesons

Figure 6.1: Direct comparison of the e�ciency and purity diagram of the models and the

FEI.[Top] Overall comparison. [Bottom] comparison zoomed in for [0,1]
%

100
.

40

Conventional Method Deep Full Event Interpretation



Excursion: Attention and 
Transformer Networks  

Application

Input-Input Layer1
It
is
in
this
spirit
that
a
majority
of
American
governments
have
passed
new
laws
since
2009
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the
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or
voting
process
more
difficult
.
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Tobias Böckh – Self-Attention and Transformer Networks 29.01.2020 12/14

Visualization

Tobias Böckh – Self-Attention and Transformer Networks 29.01.2020 8/14
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Applications of RNNs

• Translation 

• Caption Generation 

• Sentiment analysis 

• But: information of whole sentence stored 
in fixed-length context vector

Excursion: Attention and Transformer Networks

Applications of RNNs
Translation (Sequence-to-Sequence models)

Caption generation

Sentiment analysis
BUT information of whole sentence stored in fixed-length context vector
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Applications of RNNs
Translation (Sequence-to-Sequence models)

Caption generation

Sentiment analysis
BUT information of whole sentence stored in fixed-length context vector
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Recurrent Neural Networks (RNN) 
Excursion: Attention and Transformer Networks
Recurrent Neural Networks (RNN)

internal state ht = f (Whxxt + Whhht�1 + bh)

output yt = g(Wyhht + by)

 

A A A A A...=

internal state / ”memory” hn ! learn context

BUT require sequence

slow computation

long-range dependencies are tricky

Tobias Böckh – Self-Attention and Transformer Networks 29.01.2020 2/14
Credit: Tobias Böckh  

RNN Models

(a) LSTM (b) GRU

...

...

(c) Bidirectional RNN

...

...

(d) Deep RNN

Tobias Böckh – Self-Attention and Transformer Networks 29.01.2020 3/14
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Recurrent Neural Networks (RNN) 
Sequence to Sequence

Credit: Jay Alammar

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
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Recurrent Neural Networks (RNN) 
Sequence to Sequence

Credit: Jay Alammar

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
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Adding Attention
Attention is all you need

Credit: Jay Alammar

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
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Adding Attention
Attention is all you need

Step  4

 Attention is All You Need

https://arxiv.org/abs/1706.03762
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Adding Attention
Attention is all you need

Step  4

Dot-Product Attention
Luong, Pham, and Manning 2015

Attention(Q, K, V) = softmax(QK T )V

ValXes

TransposeLinear

Linear

Linear

Softma[

Decoder

Encoder

Encoder

Query

Ke\
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Dot product Attention: 
Luong, Pham, and Manning 2015

 Attention is All You Need

https://arxiv.org/abs/1706.03762
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Visualisation
Visualization

Tobias Böckh – Self-Attention and Transformer Networks 29.01.2020 8/14

Visualization

Tobias Böckh – Self-Attention and Transformer Networks 29.01.2020 9/14
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Transformer
Vaswani et al. 2017

multiple attention stacks

replaces RNNs with self-attention + feedforward

Tobias Böckh – Self-Attention and Transformer Networks 29.01.2020 10/14

34

Transformer
Vaswani et al. 2017

Credit: Jay Alammar

http://jalammar.github.io/illustrated-transformer/
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Transformer

• Multiple stacks of attention 

• Implements “Self-Attention” 

• Handel long range relations 

• Computationally efficient 

• State of the art performance

Vaswani et al. 2017



Transformer Applications in 
Belle II

DEEPFEI DEVELOPMENT

Goal: Learn generic decay
reconstruction by example

Currently FEI contains hard-coded
sub-decays

Utilising self-attention maps to cluster
particles

Implemented B ! D(! K⇡⇡0)⇡
reconstruction with transformer
network

Utilising permutation invariant loss
function: Kuhn-Munkres/Hungarian
algorithm (shipped with SciPy)

Converging towards graph-based
solution
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Deep FEI Developments

• Learn generic decay reconstruction by 
example  

• Currently FEI contains hard-coded sub-
decays  

• Utilising self-attention maps to cluster 
particles  

• Implemented B → D(→ K ππ0)π 
reconstruction with transformer network  

• Utilising permutation invariant loss 
function: Kuhn-Munkres/Hungarian 
algorithm (shipped with SciPy) 

Future work DEEPFEI DEVELOPMENT
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Other Deep NN Applications at 
Belle II

Flavor Tagging - New Approach

Jochen Gemmler Flavour Tagging with Deep Neural Networks 21.11.2018 5/11
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DEEP Flavour tagger

• Quantum Entanglement: 

• Neutral B mesons are entangled in flavour 
with their production 

• With mixing, the possible outcomes are 

Flavour Tagging

Flavor Tagging

Quantum Entanglement
Neutral B mesons are entangled after their production

decay Btag can be used as a reference for the other B meson

B meson mixing
possible outcomes: B0 B0 , B 0 B0 , B 0 B 0

Jochen Gemmler Flavour Tagging with Deep Neural Networks 21.11.2018 2/11

BB̄, BB, B̄B̄
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Validation

calibration on data

B0 ! D⇤�[! D̄0[! K+⇡�]⇡�]⇡+

B0 ! D�[! K+⇡�⇡�]⇡+

B� ! D⇤0[! D0[! K�⇡+]⇡0]⇡�

B� ! D0[! K�⇡+]⇡�]⇡�

Category Based Deep Neural Network

Belle (MC) J/ K 0
S 0.293 ± 0.01 1 0.3442±0.0009

0DOI: 10.1016/j.nima.2004.06.159
Jochen Gemmler Flavour Tagging with Deep Neural Networks 21.11.2018 10/11
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DEEP Flavour tagger

• Deep neural network approach using track 
information in Input 

• Simple approach already outperforms 
“classical” method

Flavour Tagging
Flavor Tagging - New Approach

Jochen Gemmler Flavour Tagging with Deep Neural Networks 21.11.2018 5/11

Feature Representation - Hidden Layer
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Credit: Jochen Gemler



Selective background Monte 
Carlo simulation at Belle II  

Problem

Approach at Belle:
Background MC ⇡ 10 ⇥ data

Infeasible at Belle II ! still require high statistics
Currently: ⇠ 100 HS06 s/event

1 ab�1
⇡ 80 GHS06 s

Proposed solution:

Insert NN to predict skims before expensive steps

Skims
Physics working-group specific
datasets (26)

General selections applied to
discard trivial backgrounds

Retain O(0.1–10%) of full
dataset

Generate
Keep

Discard

SkimReconstruct AnalyseSimulate
Keep

Discard

NN

Selective background Monte Carlo simulation at Belle II - James Kahn, Andreas Lindner, Thomas Kuhr 5th November 2019 3/13
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Selective Event Reconstruction 
Selective background Monte Carlo simulation at Belle II 

• Proposed Solution: 

• Let ML algorithm decide before time 
intensive steps  

• Use Graph NN for classification

SELECTIVE SIMULATION

Goal: Only simulate events
that pass skims

Graph neural network
classification

> 90% accuracy on TDCPV
charged skim

Project speedup using
HepSPEC06 from
BELLE2-NOTE-TE-2016-011

Inspect event-level
kinematics for bias

Presenting work at CHEP
(talk ref.)

PDG codes

Embed

Concatenate

Features Laplacian

Graph isomorphism

Graph isomorphism

Global pool

Dense

MVA subgroup summary - James Kahn October 2019 10/19
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Exploring Graph Neural Networks
Selective background Monte Carlo simulation at Belle II Flavor Tagging

Quantum Entanglement
Neutral B mesons are entangled after their production

decay Btag can be used as a reference for the other B meson

B meson mixing
possible outcomes: B0 B0 , B 0 B0 , B 0 B 0

Jochen Gemmler Flavour Tagging with Deep Neural Networks 21.11.2018 2/11

Dataset

⇠ 300, 000 particle collision events with binary
classification labels:

Hadronic B+ meson reconstruction (⇠ 5%)

Time-dependent CP violation (⇠ 0.2%)

Graph terminology

Nodes = Particles

Node attributes = Particle properties

Edges = Parent-daughter relations (decays)

Graph type = Tree

⌥(4S)
e
�
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B
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K
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4 GeV

p
s = 10.58 GeV

Selective background Monte Carlo simulation at Belle II - James Kahn, Andreas Lindner, Thomas Kuhr 5th November 2019 4/13
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https://github.com/deepmind/graph_nets
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Exploring Graph Neural Networks
Selective background Monte Carlo simulation at Belle II 

X = Feature matrix 
W = Weight matrix

A = adjacency matrix
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Original Graph Convolutional Networks (GCN)

Propagation rule of layer activations H
(l)

H
(l+1) = �

⇣
D̃
� 1

2 ÃD̃
� 1

2 H
(l)

W
(l)
⌘

H
(0) = X

Ã = A + IN

D̃ii =
P

j
Ãij

a b c

Ã
N⇥N = A + I =

a b c
" #

a 1 1 0
b 1 1 1
c 0 1 1

Thomas N. Kipf, Max Welling, Semi-Supervised Classification with Graph Convolutional
Networks (ICLR 2017)

Selective background Monte Carlo simulation at Belle II - James Kahn, Andreas Lindner, Thomas Kuhr 5th November 2019 11/13
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Dataset
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Graph Isomorphism Network

Node N update rule of layer ` (Red = trainable):

N
(`+1) = MLP(`)

0

@W
(`)
p N

(`)
p + W

(`)
N

(`) + W
(`)
d

X

daughters

N
(`)
d

1

A

Intuition: Create representation of node considering its neighbours

Custom weights for parent (Wp), node (W ), daughters (Wd )

Independent of daughter ordering
Normalise adjacency matrix

Prevent over-representation in high multiplicity decays

Normalised
Laplacian

Ã = A + IN

D̃ii =
P

j
Ãij

L̃ = D̃
� 1

2 ÃD̃
� 1

2

Special case of:
K. Xu, W. Hu, J. Leskovec, S. Jegelka, How Powerful are Graph Neural Networks? (CoRR 2018)

Selective background Monte Carlo simulation at Belle II - James Kahn, Andreas Lindner, Thomas Kuhr 5th November 2019 5/13
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Training

Train on 250k events (validate on
10%)

Test on 50k independent events

Batch normalisation, dropout, class
weights, early stopping, reduce LR
on plateau, model checkpoint (save
only best), . . .

Additional convolutional 1D for full
reconstruction dataset

Insert NumPy-based module into
Belle II analysis framework for
inference

PDG codes

Embed

Concatenate

Features Laplacian

Graph isomorphism

Graph isomorphism

Global pool

Dense

Conv1D

Conv1D

Concatenate

Global pool

Selective background Monte Carlo simulation at Belle II - James Kahn, Andreas Lindner, Thomas Kuhr 5th November 2019 6/13
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Training

Train on 250k events (validate on
10%)

Test on 50k independent events

Batch normalisation, dropout, class
weights, early stopping, reduce LR
on plateau, model checkpoint (save
only best), . . .

Additional convolutional 1D for full
reconstruction dataset

Insert NumPy-based module into
Belle II analysis framework for
inference

(a) TDCPV

(b) Full reconstruction
Selective background Monte Carlo simulation at Belle II - James Kahn, Andreas Lindner, Thomas Kuhr 5th November 2019 6/13Credit: James Kahn 
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Bias check

Compare event-level kinematics:

Pass skim = True

Pass skim and NN = True positive

Kullback-Leibler divergence of Q from P:
DKL(P k Q) = �

P
x2X P(x) log

⇣
Q(x)
P(x)

⌘

Selective background Monte Carlo simulation at Belle II - James Kahn, Andreas Lindner, Thomas Kuhr 5th November 2019 7/13Credit: James Kahn 
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Selective Skim Performance 

• Graph NN classification 

• > 90% accuracy on test skim 

• Orders of magnitude speed-up possible 

• Inspect event-level kinematics for bias 
(Kullback-Leibler divergence) 

• Presented at CHEP (James Kahn)

Selective background Monte Carlo simulation at Belle II 

Training

Train on 250k events (validate on
10%)

Test on 50k independent events

Batch normalisation, dropout, class
weights, early stopping, reduce LR
on plateau, model checkpoint (save
only best), . . .

Additional convolutional 1D for full
reconstruction dataset

Insert NumPy-based module into
Belle II analysis framework for
inference

(a) TDCPV

(b) Full reconstruction
Selective background Monte Carlo simulation at Belle II - James Kahn, Andreas Lindner, Thomas Kuhr 5th November 2019 6/13
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Compare event-level kinematics:

Pass skim = True
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Kullback-Leibler divergence of Q from P:
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x2X P(x) log
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(a) TDCPV

(b) Full reconstruction

Selective background Monte Carlo simulation at Belle II - James Kahn, Andreas Lindner, Thomas Kuhr 5th November 2019 7/13

Credit: James Kahn 

Bias check

https://indico.cern.ch/event/773049/contributions/3474758/
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Use case @ Belle II (Torben Ferber) �7

Electromagnetic calorimeter (ECL) Challenges: 
• strong position and time dependent 

backgrounds  
• no translational invariance in endcaps 
• Different crystal shapes in endcaps 
• crystal staggering in barrel

Use case @ Belle II (Torben Ferber) �8

Electromagnetic calorimeter (ECL)
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ThetaID begins at forward end.

0-12 is the forward endcap

13-58 is the barrel

59-68 is the backward endcap

Samuel de Jong (University of Victoria) 13th Background campaign: ECL February 3, 2016 16 / 5

Challenges: 
• strong position and time dependent 

backgrounds  
• no translational invariance in endcaps 
• Different crystal shapes in endcaps 
• crystal staggering in barrel
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ML with the Belle II Calorimeter
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Charged PID using ECL images
Clustering

Preprocessing: Image rotation, normalization, thresholds



Machine Learning at the Belle II Experiment | Simon Wehle | 05.02.2020 56

Charged PID using cluster images

• Seedless clustering around extrapolated 
track 

• Preprocessing to correct charge 
asymmetries and background fluctuations 

• Image recognition using convolutional 
networks 

• Future:  Add non-image information to the 
fully connected layers, use asymmetric 
images, use high dimensional image 
information (7×7×3..9) from digitized 
waveforms. 

First proof-of-concept

Credit: Torben Ferber 
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 ML with the Belle II calorimeter (Torben Ferber) 3

• Low transverse momentum muons 
do not reach outer muon detector 
→ Large fake rate from pions 

• Particle ID based on calorimeter:  
E/p, BDT, or CNN? 

• Design goals: 

• Separation power 

• Robustness against varying 
beam background 

• Flat e!ciency as function of 
polar angle

Muon/pion separation for low pt tracks
 ML with the Belle II calorimeter (Torben Ferber)
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Muon/pion separation for low pt tracks 

• Low transverse momentum muons do 
not reach outer muon detector → Large 
fake rate from pions  

• Particle ID based on calorimeter: E/p, 
BDT, or CNN?  

• Design goals: 

• Separation power  

• Robustness against varying beam 
background  

• Flat efficiency as function of  
polar angle 

ML with the Belle II calorimeter 

Credit: Torben Ferber 
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ECL Photon position reconstruction

• Crystal calorimeter: most information 
contained in central crystal. 

• Problem: Very sparse information leads to 
strong bias towards towards central 
crystal in non-ML approaches. 

• Current ML approach uses “brute force” 
input 5×5×3 (energy, θ, Φ) and two targets 
θTruth and ΦTruth. Barrel only (fully 
connected approach only) 

• Move to generalised local position + bias 
reconstruction next

ML with the Belle II Calorimeter

Credit: Torben Ferber 
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ECL cluster shape calibration 

• High level user analysis is performed on reduced datasets with 
several expert-engineered shower shape variables per shower 

• Used to separate photons and neutral hadrons 

• Differences in data and simulation of shower shapes reduces 
experimental precision by introducing multiple ad-hoc corrections 
(one per shower shape) 

• Under study: Use Wasserstein refiner networks to calibrate shower 
images instead, before further analysis steps 

Wasserstein Generative Adversarial Network: WGAN
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ECL cluster shape calibration 
Wasserstein Generative Adversarial Network: WGAN

MVA for the ECL @ DESY (Torben Ferber) �9

Image calibration

Wasserstein Generative Adversarial Network: WGAN  
(with supervised auxiliary constrainers: AC-WGAN)

Wasserstein Refiner Network 

DataMC

Refiner

Critic

Loss

DataNoise

Label Generator

Constrainer Critic

Loss

su
pe

rv
ise

d
Improve existing MC 

simulations using data 
before further analysis 

steps.
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Semi-supervised learning: 
Wasserstein GAN learns to 
create ‘fake’ images that 
look like real Belle II images.

Fake (WGAN, Belle II)

more training

more training

Real (Belle II)

Fake (WGAN, Belle II)

Fake (WGAN, Belle II)

Example:  
E1oE9 shower shape variable

61

ECL cluster shape calibration 
Wasserstein Generative Adversarial Network: WGAN

Credit: Torben Ferber 
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E1oE9 shower shape variable
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ECL cluster shape calibration 
Wasserstein Generative Adversarial Network: WGAN

Credit: Torben Ferber 

Future

Variational Autoencoder  Generative Adversarial Network
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 ML with the Belle II calorimeter (Torben Ferber) 4

• Di!cult to get very pure photon 
calibration samples of low-medium 
energy at Belle II 

• Train CycleGAN to convert electrons 
into photons: Same physics, di"erent 
curvature due to magnetic field. 

• Visually appealing, but is the physics 
right? (same questions as for GANs) 

• Design goals: 

• Proof on concept for a use case of 
CycleGANs in HEP

Photon calibration samples using CycleGANs

Seite 1

Calibration sample of low energy photons

| Präsentationstitel | Vorname Name, Datum (Eingabe über "Einfügen > Kopf- und Fußzeile")

Generated by a CycleGAN

Motivation:

Use case for CycleGAn in HEP?

Evaluate simulation of low energy photons, with 

produced sample of generated “real” photons

Idea:

Train CycleGAN to convert from simulated electrons in 

ECL to simulated photons in ECL.

Apply the conversion on real electron, so the output will 

be generated “real” photons.

Train on simulation Used trained model on real data

CycleGAN

Horse ↔ Zebra
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| Präsentationstitel | Vorname Name, Datum (Eingabe über "Einfügen > Kopf- und Fußzeile")

Generated by a CycleGAN

Motivation:

Use case for CycleGAn in HEP?

Evaluate simulation of low energy photons, with 

produced sample of generated “real” photons

Idea:

Train CycleGAN to convert from simulated electrons in 

ECL to simulated photons in ECL.

Apply the conversion on real electron, so the output will 

be generated “real” photons.

Train on simulation Used trained model on real data

CycleGAN

Seite 1

Calibration sample of low energy photons

| Präsentationstitel | Vorname Name, Datum (Eingabe über "Einfügen > Kopf- und Fußzeile")

Generated by a CycleGAN

Motivation:

Use case for CycleGAn in HEP?

Evaluate simulation of low energy photons, with 

produced sample of generated “real” photons

Idea:

Train CycleGAN to convert from simulated electrons in 

ECL to simulated photons in ECL.

Apply the conversion on real electron, so the output will 

be generated “real” photons.

Train on simulation Used trained model on real data

CycleGAN

Electron ↔ Photon

✓ 

? 

Electron input 
WGAN photon output 

Cycle-constraints unstable so far

Work in progress: WGAN
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Photon calibration samples using CycleGANs 

• Difficult to get very pure photon calibration 
sample of low-medium energy at Belle II  

• Train CycleGAN to convert electrons into 
photons: Same physics, different 
curvature due to magnetic field 

•  Visually appealing, but is the physics 
right? (Same question for GANs) 

• Design goals: 

• Proof of concept for a use case of 
CycleGANs in HEP

ML with the Belle II calorimeter

Credit: Torben Ferber 
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Fast inference for L1 trigger 

• New “Cross disciplinary” project within the Quantum Universe cluster: Belle II 
(intensity frontier) and SuperCDMS (low background frontier) 

ML with the Belle II calorimeter 
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• New “Cross disciplinary” project within the Quantum Universe cluster:  
Belle II (intensity frontier) and SuperCDMS (low background frontier)

Fast inference for L1 trigger

(a) Simulated ALP ! gg (mALP = 0.3 GeV/c2)
energy depositions in the Belle II calorimeter and a
currently used example trigger cell (magenta line).

(b) Example SuperCDMS Soudan waveforms
for a low-energy signal-like event and low-
frequency-noise background.

Figure 1: Example input data from Belle II (left) and SuperCDMS (right).

CDMS SNOLAB to not saturate the data acquisition (DAQ) system. A key requirement
for the DAQ system is to be dead–time free, maximizing the experiment’s exposure. This
means the hardware level trigger has to act in real–time limiting its decision time to 1.6µs.
A way to lower the threshold in the presence of LFN noise while keeping the DAQ dead–
time free is to identify LFN noise in real–time. LFN traces do not have a unique pulse
shape but the observed shapes typically differ from signal–like pulses. We will work to-
wards replacing the existing threshold–based amplitude triggers by an ML classification
trigger.

Within this project we will jointly develop expertise to simplify the workflow from of-
fline ML to real–time ML on fast hardware. We will exploit the unique opportunity in both
experiments to obtain pure data samples for supervised training. We will first demon-
strate that offline ML classifiers using industry–standard deep learning frameworks Py-

Torch or TensorFlow can be used to identify signal(–like) events over background in
both experiments. We will then use and contribute to ongoing activities in projects like
HLS4ML [5] to translate the offline algorithms to fast hardware using common inter-
faces. Unlike offline reconstruction, real–time selection decisions are irreversible and re-
quire conceptual work to understand implications on systematic uncertainties and re-
producibility of results when moving from current simple trigger logics to complex se-
lections based on ML. Collaboration between so different communities like Belle II and
SuperCDMS will have a positive impact of the community–wide acceptance of such de-
velopments.

We ask for support of one postdoc for SuperCDMS and one PhD student for Belle II.
While data is generally private within the respective collaborations, we will work to-

B–2

current 4×4 trigger cell

Belle II Simulation

• Belle II: Real time photon 
identification for merged 
clusters and low threshold 
Dark Photon searches 

• SuperCDMS: Ultra-low 
threshold triggers for light 
ALP searches 

• Please get in touch if you 
are interested.

SuperCDMS data
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We ask for support of one postdoc for SuperCDMS and one PhD student for Belle II.
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Belle II Simulation

• Belle II: Real time photon 
identification for merged 
clusters and low threshold 
Dark Photon searches 

• SuperCDMS: Ultra-low 
threshold triggers for light 
ALP searches 

• Please get in touch if you 
are interested.

SuperCDMS data

• Belle II: Real time photon 
identification for merged clusters and 
low threshold Dark Photon searches  

• SuperCDMS: Ultra-low threshold 
triggers for light ALP searches  

• Please get in touch if you are 
interested. 

Credit: Torben Ferber 
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Dangers of Deep Learning Methods

• Deep learning methods sometimes have 
extraordinary amount of free parameters 
(VC dimensions >> data) 

• Learned “features" of the data is not 
always obvious

Final Excursion: Fallacies and Prospects 
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Dangers of Deep Learning Methods

• Deep learning methods sometimes have 
extraordinary amount of free parameters 
(VC dimensions >> data) 

• Learned “features" of the data is not 
always obvious

Final Excursion: Fallacies and Prospects 

Re-Interfere model response on the input may help understand the expertise 

"Why Should I Trust You?": Explaining the Predictions of Any Classifier 
Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin
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Dangers of Deep Learning Methods

• Deep learning methods sometimes have 
extraordinary amount of free parameters 
(VC dimensions >> data) 

• Learned “features" of the data is not 
always obvious 

• These problems often can’t be spotted 
with classical test and training data sets

Final Excursion: Fallacies and Prospects 

Published as a conference paper at ICLR 2019

Figure 2: Heatmaps showing the class evidence extracted from of each part of the image. The spatial
sum over the evidence is the total class evidence.

Note that an important ingredient of our model is the linear classifier on top of the local feature
representation. The word linear here refers to the combination of a linear spatial aggregation (a
simple average) and a linear classifier on top of the aggregated features. The fact that the classifier
and the spatial aggregation are both linear and thus interchangeable allows us to pinpoint exactly how
evidence from local image patches is integrated into one image-level decision.

3 RELATED LITERATURE

BoF models and DNNs There are some model architectures that fuse elements from DNNs and
BoF models. Predominantly, DNNs were used to replace the previously hand-tuned feature extraction
stage in BoF models, often using intermediate or higher layer features of pretrained DNNs (Feng
et al., 2017; Gong et al., 2014; Ng et al., 2015; Mohedano et al., 2016; Cao et al., 2017; Khan et al.,
2016) for tasks such as image retrieval or geographical scene classification. Other work has explored
how well insights from DNN training (e.g. data augmentation) transfer to the training of BoF and
Improved Fisher Vector models (Chatfield et al., 2014) and how SIFT and CNN feature descriptions
perform (Babenko & Lempitsky, 2015). In contrast, our proposed BoF model architecture is simpler
and closer to standard DNNs used for object recognition while still maintaining the interpretability
of linear BoF models with local features. Furthermore, to our knowledge this is the first work that
explores the relationship between the decision-making of BoF and DNN models.

Interpretable DNNs Our work is most closely related to approaches that use DNNs in conjunction
with more interpretable elements. Pinheiro & Collobert (2014) adds explicit labelling of single pixels
before the aggregation to an image-level label. The label of each pixel, however, is still inferred from
the whole image, making the pixel assignments difficult to interpret. Xiao et al. (2015) proposed a
multi-step approach combining object-, part- and domain-detectors to reach a classification decision.
In this process object-relevant patches of variable sizes are extracted. In contrast, our approach is
much simpler, reaches higher accuracy and is easier to interpret. Besides pixel-level attention-based
mechanisms there are several attempts to make the evidence accumulation more interpretable. Hinton
et al. (2015) introduced soft decision trees that are trained on the predictions of neural networks.
While this increases performance of decision trees, the gap to neural networks on data sets like
ImageNet is still large. In Li et al. (2017) an autoencoder architecture is combined with a shallow
classifier based on prototype representations. Chen et al. (2018) uses a similar approach but is based
on a convolutional architecture to extract class-specific prototype patches. The interpretation of the
prototype-based classification, however, is difficult because only the L2 norm between the prototypes
and the extracted latent representations is considered1. Finally, the class activation maps by Zhou et al.
(2015) share similarities to our approach as they also use a CNN with global average pooling and a
linear classifier in order to extract class-specific heatmaps. However, their latent representations are

1Just because two images have a similar latent representation does not mean that they share any similarities
in terms of human-interpretable features.

3

Heatmaps showing the class evidence  
extracted from of each part of the image.  

Approximating CNNs with Bag-of-local-Features models works surprisingly well on ImageNet
Wieland Brendel, Matthias Bethge

https://arxiv.org/search/cs?searchtype=author&query=Brendel%2C+W
https://arxiv.org/search/cs?searchtype=author&query=Bethge%2C+M
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Figure 3: Most informative image patches for BagNets. For each class (row) and each model (column)
we plot two subrows: in the top subrow we show patches that caused the highest logit outputs for the
given class across all validation images with that label. Patches in the bottom subrow are selected in
the same way but from all validation images with a different label (highlighting errors).

extracted from the whole image and it is unclear how the heatmaps in the latent space are related to
the pixel space. In our approach the CNN representations are restricted to very small image patches,
making it possible to trace exactly how each image patch contributes the final decision.

Scattering networks Another related work by Oyallon et al. (2017) uses a scattering network with
small receptive fields (14 x 14 pixels) in conjunction with a two-layer Multilayer Perceptron or a
ResNet-10 on top of the scattering network. This approach reduces the overall depth of the model
compared to ResNets (with matched classification accuracy) but does not increase interpretability
(because of the non-linear classifier on top of the local scattering features).

A set of superficially similar but unrelated approaches are region proposal models (Wei et al., 2016;
Tang et al., 2017; 2016; Arandjelovic et al., 2015). Such models typically use the whole image to
infer smaller image regions with relevant objects. These regions are then used to extract a spatially
aligned subset of features from the highest DNN layer (so information is still integrated far beyond
the proposed image patch). Our approach does not rely on region proposals and extracts features only
from small local regions.

4 RESULTS

In the first two subsections we investigate the classification performance of BagNets for different
patch sizes and demonstrate insights we can derive from its interpretable structure. Thereafter we
compare the behaviour of BagNets with several widely used high-performance DNNs (e.g. VGG-16,
ResNet-50, DenseNet-169) and show evidence that their decision-making shares many similarities.

4.1 ACCURACY & RUNTIME OF BAGNETS ON IMAGENET

We train the BagNets directly on ImageNet (see Appendix for details). Surprisingly, patch sizes as
small as 17 ⇥ 17 pixels suffice to reach AlexNet (Krizhevsky et al., 2012) performance (80.5% top-5
performance) while patches sizes 33 ⇥ 33 pixels suffice to reach close to 87.6%.

We also compare the runtime of BagNet-q (q = 33, 17, 9) in inference mode with images of size
3⇥ 224⇥ 224 and batch size 64 against a vanilla ResNet-50. Across all receptive field sizes BagNets
reach around 155 images/s for BagNets compared to 570 images/s for ResNet-50. The difference in
runtime can be attributed to the reduced amount of downsampling in BagNets compared to ResNet-50.

4.2 EXPLAINING DECISIONS

For each q ⇥ q patch the model infers evidence for each ImageNet classes, thus yielding a high-
resolution and very precise heatmap that shows which parts of the image contributes most to certain
decisions. We display these heatmaps for the predicted class for ten randomly chosen test images in

4

https://arxiv.org/search/cs?searchtype=author&query=Brendel%2C+W
https://arxiv.org/search/cs?searchtype=author&query=Bethge%2C+M
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Figure 3: Most informative image patches for BagNets. For each class (row) and each model (column)
we plot two subrows: in the top subrow we show patches that caused the highest logit outputs for the
given class across all validation images with that label. Patches in the bottom subrow are selected in
the same way but from all validation images with a different label (highlighting errors).

extracted from the whole image and it is unclear how the heatmaps in the latent space are related to
the pixel space. In our approach the CNN representations are restricted to very small image patches,
making it possible to trace exactly how each image patch contributes the final decision.

Scattering networks Another related work by Oyallon et al. (2017) uses a scattering network with
small receptive fields (14 x 14 pixels) in conjunction with a two-layer Multilayer Perceptron or a
ResNet-10 on top of the scattering network. This approach reduces the overall depth of the model
compared to ResNets (with matched classification accuracy) but does not increase interpretability
(because of the non-linear classifier on top of the local scattering features).

A set of superficially similar but unrelated approaches are region proposal models (Wei et al., 2016;
Tang et al., 2017; 2016; Arandjelovic et al., 2015). Such models typically use the whole image to
infer smaller image regions with relevant objects. These regions are then used to extract a spatially
aligned subset of features from the highest DNN layer (so information is still integrated far beyond
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Plans for the Future of ML at 
Belle II

GUEST SPEAKER
Talk from Gregor
Kasieczka
(U. Hamburg, CMS)

Deep-Learning Jets with
Uncertainties and More

Quantifying NN uncertainties
an outstanding problems in
physics usage

Capture uncert. from finite
training set with Bayesian neural
networks

Stabilise mismodelling and
resolution via decorrelation

Example of inter-experiment
knowledge sharing

MVA subgroup summary - James Kahn October 2019 6/19
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DEEPFEI DEVELOPMENT

Goal: Learn generic decay
reconstruction by example

Currently FEI contains hard-coded
sub-decays

Utilising self-attention maps to cluster
particles

Implemented B ! D(! K⇡⇡0)⇡
reconstruction with transformer
network

Utilising permutation invariant loss
function: Kuhn-Munkres/Hungarian
algorithm (shipped with SciPy)

Converging towards graph-based
solution

VeOf-aWWeQWLRQ�PaS

feaWXUe�PaSV

WranVpoVe

VofWma[

MVA subgroup summary - James Kahn October 2019 14/19
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Graph Neural Network

• GNNs might be applicable in many parts 
of our analyses 

• Deep Full Event Interpretation 

• Skimming of Data 

• Tracking

Plans for the Future of ML at Belle II

Ereignis nach der ersten Stufe

Oliver Frost | DESY | 09.03.2015 | Page 18/22

Experimenteller Kontext Die Zentrale Driftkammer des Belle-II-Detektors Zusammenfassung des Algorithmus

HEP.TrkX project

https://github.com/HEPTrkX/heptrkx-gnn-tracking
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Systematic Uncertainties and Deep Learning

• Systematic uncertainty on multivariate 
methods are a serious challenge  

• How to propagate uncertainties 

• Bayesian Neural Networks are more and 
more used in HEP
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Quantifying NN uncertainties
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physics usage
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networks
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resolution via decorrelation
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Conclusion

• “Classical" ML is very successful in Belle II 
analyses already 

• Potential of Deep Learning is explored in many 
studies like simulation, reconstruction and 
analyses 

• Is the problem well described? 

• Does it get the physics right? 

• There is for sure a lot room for improvement 

• GraphNN approaches offer interesting new 
opportunities 

• Work in progress 

• Promising approaches exist already from 
industry and other experiments

Prospects for machine learning

Credit: Google DeepMind
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Contact

 Deutsches  
Elektronen-Synchrotron 

www.desy.de

Simon Wehle 
Belle & Belle II 
simon.wehle@desy.de 
+49 40 4994 3789

Thank you very much for your attention!


