The decay $B \to D^* \tau^- \bar{\nu}_\tau$ is predicted to be sensitive to new physics including a non-universal coupling over the three generations. We report the first measurement of the τ polarization $P_\tau(D^*)$ and a new measurement of the ratio of the branching fractions $R(D^*) = BF(B \to D^* \tau^- \bar{\nu}_\tau) / BF(B \to D^* \tau^- \bar{\nu}_\tau)$ using the full data sample containing $(7.72 \pm 0.11) \times 10^8 B \bar{B}$ pairs accumulated at the Belle Experiment. We reconstruct signal events from $\tau^- \to \pi^- \nu_\tau$ and $\rho^- \nu_\tau$. Our measurement results in $P_\tau(D^*) = -0.38 \pm 0.51 (\text{stat.}) \pm 0.12 (\text{syst.})$ and $R(D^*) = 0.270 \pm 0.035 (\text{stat.}) \pm 0.017 (\text{syst.})$. These are consistent with the SM prediction.

Belle Experiment

B-factory at the e^+e^- Collider KEKB

- e^+e^- collision at 10.58 GeV, where B mesons are produced through $Y(4S) \to B B$
- Clean environment as there is no particle except for two B mesons
- Belle has recorded data containing $(7.72 \pm 0.11) \times 10^8 B \bar{B}$

τ Polarization Analysis Method

Principle of the Measurement

We need to measure $\cos \theta_{\text{hel}}$, but cannot obtain the complete τ momentum due to insufficient constraint

- Use W rest frame

Signal Extraction

- E_{CL} is a linear energy sum of the remaining clusters in ECL
- This is the best variable in terms of:
 - Good background discrimination
 - Very small correlation to $P_\tau(D^*)$

Hadronic B Background Calibration

- Important background component:
 - Similar event topology to the signal
 - Huge uncertainty due to low energy hadronization process
- Strategy for the yield determination:
 - Calibrate composition of hadronic B decays modes using data
 - Determine the yield in the final fit

Calibration Method

- Fully reconstruct seven specific B decay modes
- Compare the yields between the MC and the data
- Take the yield ratio
- The ratio is used as a calibration factor for the yield in the MC

Summary

Using hadronic τ decays $\tau^- \to \pi^- \nu_\tau$ and $\rho^- \nu_\tau$, we measured $P_\tau(D^*)$ as well as $R(D^*)$. One of the difficulties in the $P_\tau(D^*)$ measurement was that the full τ momentum could not be obtained. We have established the $P_\tau(D^*)$ measurement method using the rest frame of W and the symmetry in the decay kinematics. To cope with background from hadronic B decays, we have calibrated the composition of the decay modes using the calibration data samples. Our measurement results in $P_\tau(D^*) = -0.38 \pm 0.51 (\text{stat.}) \pm 0.12 (\text{syst.})$, $R(D^*) = 0.270 \pm 0.035 (\text{stat.}) \pm 0.017 (\text{syst.})$, consistent with the SM prediction. Our study has demonstrated the polarization measurement in $B \to D^* \tau^- \bar{\nu}_\tau$, that gives an additional dimension in the NP searches with the semitauonic B meson decays.