Classification of Simple W' Models

Tomohiro Abe

Institute for Advanced Research Nagoya University,
Kobayashi-Maskawa Institute
work in collaboration with
Ryo Nagai (Nagoya U.)

The 3rd International Symposium on
"Quest for the Origin of Particles and the Universe" (KMI2017)

What is \mathbf{W}^{\prime} ?

Hypothetical particle

- spin 1
- heavier version of W boson

Motivated by various models beyond the standard model

- dynamical electroweak symmetry breaking
- Extra dimension models (KK gauge boson)
- Unification models ($\mathrm{W}_{\mathrm{R}}, \cdots$)
- ...

current bound W'

$\mathrm{m}_{\mathrm{w}^{\prime}}>4.7 \mathrm{TeV}$ with the assumiptions, $\mathbf{g}_{\mathrm{w}^{\prime f f}}=\mathbf{g}_{\mathrm{wff}}{ }^{\mathbf{S M}}$
This bound depends on W' couplings.
However, couplings are unknown

W' couplings are unknown parameters

Decay width are unknown

$$
\begin{aligned}
\Gamma\left(W^{\prime} \rightarrow W Z\right) & \simeq \frac{1}{192 \pi} \frac{m_{W^{\prime}}^{5}}{m_{W}^{2} m_{Z}^{2}} g_{W W^{\prime} Z}^{2}, \\
\Gamma\left(W^{\prime} \rightarrow u_{i} d_{j}\right) & \simeq \frac{1}{16 \pi}\left|V_{C K M}^{i j}\right|^{2} m_{W^{\prime}} g_{W^{\prime}}^{2}, \\
\Gamma\left(W^{\prime} \rightarrow \ell \nu\right) & \simeq \frac{1}{48 \pi} m_{W^{\prime}} g_{W^{\prime}}^{2},
\end{aligned}
$$

However, the ratio could be predicted, if we know relations among couplings

$$
\frac{\Gamma\left(W^{\prime} \rightarrow W Z\right)}{\Gamma\left(W^{\prime} \rightarrow \ell \nu\right)} \simeq \frac{m_{W^{\prime}}^{4}}{4 m_{W}^{2} m_{Z}^{2}} \frac{g_{W W^{\prime} Z}^{2}}{g_{W^{\prime}}^{2}}
$$

We can predict the main decay mode of W^{\prime}

This work

Goal

- find the main decay mode of W^{\prime} in a model independent manner

Strategy

- perturbative unitarity
- find relations among various couplings
- compare widths $\Gamma\left(\mathrm{W}^{\prime} \rightarrow \mathrm{ff}\right)$ and $\Gamma\left(\mathrm{W}^{\prime} \rightarrow \mathrm{WZ}\right)$
- find the main decay mode of W^{\prime}

I will discuss Two setups

(1) $\mathbf{S M}+\mathbf{W}^{\prime}+\mathbf{Z}^{\prime}+\mathbf{C P}-$ even scalars

- minimal flavor violation is assumed
- arbitrary number of CP-even scalars

$$
\begin{aligned}
& g_{\bar{u}_{i} d_{j} V^{+}}^{L}=V_{C K M}^{i j} g_{V}, \quad g_{\bar{\nu}_{i} \ell_{j} V^{+}}^{L}=\delta^{i j} g_{V}^{\ell}, \\
& g_{\bar{u}_{i} u_{j} V^{0}}^{L, R}=\delta^{i j} g_{\bar{u} u V^{0}}^{L, R}, \quad g_{\bar{d}_{i} d_{j} V^{0}}^{L, R}=\delta^{i j} g_{\bar{d} d V^{0}}^{L, R}, \quad g_{\bar{\ell}_{i} \ell_{j} V^{0}}^{L, R}=\delta^{i j} g_{\overline{\ell \ell} V^{0}}^{L, R} \\
& g_{\bar{u}_{i} u_{j} h}^{L,}=\delta^{i j} g_{\bar{u} u h}, \quad g_{\bar{d}_{i} d_{j} h}=\delta^{i j} g_{\bar{d} d h}, \quad g_{\bar{\ell}_{i} \ell_{j} h}=\delta^{i j} g_{\bar{\ell} \ell h} .
\end{aligned}
$$

(2) $\mathrm{SM}+\mathrm{W}^{\prime}+\mathrm{Z}^{\prime}+$ CP-even scalars + CP-odd scalars

two fermions \rightarrow WW'

amplitude $\mathbf{M}_{\mathbf{i j}}$ at high energy limit (i, j are the twice of the helicity of f and f -bar)

$$
\begin{aligned}
& \mathcal{M}_{-+} \simeq \frac{s}{2 m_{W^{\prime} m_{W^{\prime}}}} \mathcal{A} \sin \theta, \\
& \mathcal{M}_{+-} \simeq \frac{s}{2 m_{W^{\prime}} m_{W^{\prime}}} \mathcal{B} \sin \theta, \\
& \mathcal{M}_{++} \simeq \frac{\sqrt{s}}{2 m_{W} m_{W^{\prime}}}\left(\mathcal{C}^{(0)}+\mathcal{C}^{(1)} \cos \theta\right), \\
& \mathcal{M}_{--} \simeq \frac{\sqrt{s}}{2 m_{W} m_{W^{\prime}}}\left(\mathcal{D}^{(0)}+\mathcal{D}^{(1)} \cos \theta\right),
\end{aligned}
$$

$$
\begin{aligned}
& \text { where } \\
& \qquad \begin{array}{c}
\mathcal{A}=-\frac{1}{2} g_{W} g_{W^{\prime}}+\sum_{V=Z, Z^{\prime}} g_{W W^{\prime} V} g_{\bar{u} u V}^{L}, \\
\mathcal{B}
\end{array}=\sum_{V=Z, Z^{\prime}} g_{W W^{\prime}, V} g_{\bar{u} u V}^{R},
\end{aligned}
$$

We impose $A=0, B=0, C^{(0)}=0, D^{(0)}=0, C^{(1)}=0, D^{(1)}=0$

two fermions \rightarrow WW' $^{\prime}$

After taking linear combination, we find four independent relations

$$
\begin{aligned}
\frac{1}{2} g_{W} g_{W^{\prime}} & =\sum_{V=Z, Z^{\prime}} g_{W W^{\prime} V} g_{\bar{u} u V}^{L} \\
0 & =\sum_{V=Z, Z^{\prime}} g_{W W^{\prime} V} g_{\bar{u} u V}^{R} \\
g_{W} g_{W^{\prime}} & =2 \sum_{h} g_{W W^{\prime} h} \frac{g_{\bar{u} u h}}{m_{u}} \\
0 & =\sum_{V=Z, Z^{\prime}} \frac{m_{W}^{2}-m_{W^{\prime}}^{2}}{m_{V}^{2}} g_{W W^{\prime} V}\left(g_{\bar{u} u V}^{L}-g_{\bar{u} u V}^{R}\right)
\end{aligned}
$$

two fermions \rightarrow WW'

By combining sum rules, we find

$$
g_{W W^{\prime} Z} \simeq-\frac{m_{W} m_{Z}}{m_{Z^{\prime}}^{2}} g_{W^{\prime}} \quad\left(m_{W^{\prime}} \simeq m_{Z^{\prime}} \gg m_{W}, m_{Z}\right)
$$

W' decay width

$$
\begin{aligned}
& \Gamma\left(W^{\prime} \rightarrow W Z\right) \simeq \frac{1}{192 \pi} \frac{m_{W^{\prime}}^{2}}{m_{W}^{2} m_{Z}^{2}} g_{W W^{\prime} Z}^{2}, \\
& \Gamma\left(W^{\prime} \rightarrow u_{i} d_{j}\right) \simeq \frac{1}{16 \pi}\left|V_{C K M}^{i j}\right|^{2} m_{W^{\prime}} g_{W^{\prime}}^{2}, \\
& \Gamma\left(W^{\prime} \rightarrow \ell \nu\right) \simeq \frac{1}{48 \pi} m_{W^{\prime}} g_{W^{\prime}}^{2},
\end{aligned}
$$

ratio

$$
\frac{\Gamma\left(W^{\prime} \rightarrow W Z\right)}{\Gamma\left(W^{\prime} \rightarrow f_{i} f_{j}\right)} \simeq \frac{1}{4 c_{i j}}
$$

$$
c_{i j}= \begin{cases}N_{c}\left|V_{C K M}^{i j}\right|^{2} & \text { (for quarks) } \\ \delta^{i j} & \text { (for leptons) }\end{cases}
$$

two fermions \rightarrow WW'

We find

$$
\frac{\Gamma\left(W^{\prime} \rightarrow W Z\right)}{\sum_{f} \Gamma\left(W^{\prime} \rightarrow f_{i} f_{j}\right)} \simeq \frac{1}{4 \times\left(\left(N_{c}+1\right) \times 3\right)}=\frac{1}{48}
$$

and thus

$$
\begin{aligned}
\operatorname{Br}\left(W^{\prime} \rightarrow W Z\right) & =\frac{\Gamma\left(W^{\prime} \rightarrow W Z\right)}{\Gamma\left(W^{\prime} \rightarrow W Z\right)+\sum_{f} \Gamma\left(W^{\prime} \rightarrow f f\right)+\sum_{X} \Gamma\left(W^{\prime} \rightarrow X\right)} \\
& \leq \frac{\Gamma\left(W^{\prime} \rightarrow W Z\right)}{\Gamma\left(W^{\prime} \rightarrow W Z\right)+\sum_{f} \Gamma\left(W^{\prime} \rightarrow f f\right)} \\
& \simeq 20 / 0
\end{aligned}
$$

short summary and next step

SM + W' + Z' + CP-even scalars

- unitarity analysis
- $\operatorname{Br}\left(\mathrm{W}^{\prime} \rightarrow \mathrm{WZ}\right)<2 \%$
- W' \rightarrow fermions is the main decay mode
- independent of the number of CP-even scalars

If \mathbf{W}^{\prime} is discovered in future through $\mathbf{W}^{\prime} \rightarrow \mathbf{W Z}$, then it implies $\operatorname{Br}\left(\mathrm{W}^{\prime} \rightarrow \mathbf{W Z}\right) \gg \mathbf{2 \%}$. Is it possible?

A possible way to make $\operatorname{Br}\left(\mathbf{W}^{\prime} \rightarrow \mathbf{W Z}\right)>\mathbf{2 \%}$

- add other interactions and/or particles
- (or unitarity violation)

Adding CP-odd scalars $\boldsymbol{\Delta}$

coupling relations

$$
\begin{aligned}
\frac{1}{2} g_{W} g_{W^{\prime}} & =\sum_{V=Z, Z^{\prime}} g_{W W^{\prime} V} g_{\bar{u} u V}^{L}, \\
0 & =\sum_{V=Z, Z^{\prime}} g_{W W^{\prime} V} g_{\bar{u} u V}^{R}, \\
g_{W} g_{W^{\prime}} & =2 \sum_{h} g_{W W^{\prime} h} \frac{g_{\bar{u} u h}}{m_{u}} \\
\sum_{\Delta^{0}} \frac{g_{\bar{u} u \Delta^{0}}}{m_{u}} g_{W W^{\prime} \Delta} & =\sum_{V=Z, Z^{\prime}} 2 g_{W W^{\prime} V} \frac{m_{W}^{2}-m_{W^{\prime}}^{2}}{m_{V}^{2}}\left(g_{\bar{u} u V}^{L}-g_{\bar{u} u V}^{R}\right)
\end{aligned}
$$

Adding CP-odd scalars $\boldsymbol{\Delta}$

$$
g_{W W^{\prime} Z} \simeq-\frac{m_{W} m_{Z}}{m_{Z^{\prime}}^{2}}\left(g_{W^{\prime}}+x_{\Delta}\right)
$$

$$
x_{\Delta}=\sum_{\Delta} \frac{g_{\bar{u} u \Delta}}{m_{u}} \frac{g_{W W^{\prime} \Delta}}{g_{W}}
$$

We can estimate the branching ratio

$$
\begin{aligned}
\operatorname{Br}\left(W^{\prime} \rightarrow W Z\right) & =\frac{\Gamma\left(W^{\prime} \rightarrow W Z\right)}{\Gamma\left(W^{\prime} \rightarrow W Z\right)+\sum_{f} \Gamma\left(W^{\prime} \rightarrow f f\right)+\sum_{X} \Gamma\left(W^{\prime} \rightarrow X\right)} \\
& \leq \frac{\Gamma\left(W^{\prime} \rightarrow W Z\right)}{\Gamma\left(W^{\prime} \rightarrow W Z\right)+\sum_{f} \Gamma\left(W^{\prime} \rightarrow f f\right)}
\end{aligned}
$$

$\mathrm{Br}\left(\mathrm{W}^{\prime} \rightarrow \mathrm{WZ}\right)>\mathbf{2 \%}$ thanks to CP-odd scalars

Summary

W' is a popular particle in physics beyond the standard model

- dynamical electroweak symmetry breaking
- Extra dimension models (KK gauge boson)
- Unification models ($\mathrm{W}_{\mathrm{R}}, \cdots$)

We have studied \mathbf{W}^{\prime} in a model independent manner

* perturbative unitarity
\star coupling relations

Setup 1: SM + W' + Z' + CP-even scalars
$\star \operatorname{Br}\left(\mathrm{W}^{\prime} \rightarrow \mathrm{WZ}\right)<2 \%$

Setup 2: SM + W' + Z' + CP-even scalars + CP-odd scalars
$\star \operatorname{Br}\left(\mathrm{W}^{\prime} \rightarrow \mathrm{WZ}\right)$ can be >> 2\%

