SHORT-DISTANCE CONSTRAINTS TO THE MUON g - 2 HLbL

Quark-loop
SD4: naive
SD3: correct

Where are we now: experiment/white paper

Short-distance constraints

- $a_{\mu}=116592089(63) \times 10^{-11}(\mathrm{BNL})$
- $a_{\mu}=116592040(54) \times 10^{-11}$ (FNAL)
- $a_{\mu}=116592061(41) \times 10^{-11}($ FNAL + BNL $)$
- $a_{\mu}=116591810(43) \times 10^{-11}$ (White paper)
- $\Delta a_{\mu}=251(59) \times 10^{-11}$
- Theory and experiment very similar error: improvement needed on the theory

Hadronic contributions

Short-distance constraints

Johan Bijnens

- Muon and photon lines, representative diagrams
- The blobs are hadronic contributions
- Higher order contributions of both types: known accurately enough
- $a_{\mu}^{H V P}=6845(40) 10^{-11}($ LO+NLO+NNLO) (see earlier this week)
- $a_{\mu}^{H L b L}=92(18) 10^{-11}$ (LO+NLO) (today and tomorrow)

HLbL: the main object to calculate

Short-distance constraints
Johan Bijnens

Introduction HLbL overview

- Muon line and photons: well known
- The blob: fill in with hadrons/QCD
- Trouble: low and high energy very mixed
- q_{4} always at zero
- Double counting needs to be avoided: hadron exchanges versus quarks

Contributions

- Numbers from white paper (updates see talks this afternoon)
- "Long distance": under good control
- Dispersive method: Berne group around G. Colangelo

Short-distance constraints

- π^{0} (and η, η^{\prime}) pole: 93.8(4.0) 10^{-11}
- Pion and kaon box (pure): -16.4(2) 10^{-11}
- $\pi \pi$-rescattering (include scalars below 1 GeV):-8(1) 10^{-11}
- Charm (beauty, top) loop: 3(1) 10^{-11}
- "Short and medium distance"
- Axial vector: 6(6) 10^{-11}
- Short-distance: 15 (10) 10^{-11}
- Clearly the last item needs improvement
- A guesstimate of the overlap went into this

Definitions

Short-distance constraints
Johan Bijnens

Introduction

overview

- Actually we really need $\left.\frac{\delta \Pi^{\mu \nu \lambda \sigma}\left(q_{1}, q_{2}, q_{3}\right)}{\delta q_{4 \rho}}\right|_{q_{4}=0}$
- Never purely short-distance: q_{4} at zero
- $q_{i}^{2}=-Q_{i}^{2}$

Definitions

$$
\Pi^{\mu \nu \lambda \sigma}=-i \int d^{4} x d^{4} y d^{4} z e^{-i\left(q_{1} \cdot x+q_{2} \cdot y+q_{3} \cdot z\right)}\left\langle T\left(j^{\mu}(x) j^{\nu}(y) j^{\lambda}(z) j^{\sigma}(0)\right)\right\rangle
$$

Short-distance constraints

Use the Colangelo et al. conventions (mainly)

$$
\begin{aligned}
\Pi^{\mu \nu \lambda \sigma} & =\sum_{i=1}^{54} T_{i}^{\mu \nu \lambda \sigma} \hat{\Pi}_{i},\left.\quad \frac{\delta \Pi^{\mu \nu \lambda \sigma}}{\delta q_{4 \rho}}\right|_{q_{4}=0}=\left.\sum_{i=1}^{54} \frac{\delta T_{i}^{\mu \nu \lambda \sigma}}{\delta q_{4 \rho}} \hat{\Pi}_{i}\right|_{q_{4}=0} \\
a_{\mu} & =\frac{2 \alpha^{3}}{3 \pi^{2}} \int_{0}^{\infty} d Q_{1} d Q_{2} Q_{1}^{3} Q_{2}^{3} \int_{-1}^{1} d \tau \sqrt{1-\tau^{2}} \sum_{i=1}^{12} \hat{T}_{i}\left(Q_{1}, Q_{2}, \tau\right) \bar{\Pi}_{i}\left(Q_{1}, Q_{2}, \tau\right) \\
Q_{3}^{2} & =Q_{1}^{2}+Q_{2}^{2}+2 Q_{1} Q_{2} \tau
\end{aligned}
$$

- The $12 \bar{\Pi}_{i}$ from $\hat{\Pi}_{i}$ for $i=1,4,7,17,39,54$
- The integral can be parametrized in many ways

Short-distance constraints

- There are very many different types of short-distance constraints (SDC)
- Those on hadronic properties
- Couplings of hadrons to off-shell photons
- Pure OPE (e.g. $\pi^{0} \rightarrow \gamma^{*} \gamma^{*}$ at $Q_{1}^{2}=Q_{2}^{2}$)

Short-distance constraints

Johan Bijnens

- Light-cone QCD sum rules
- On the full four-point function (4, 3 or 2 currents close)
- SD4: $\Pi^{\mu \nu \lambda \sigma}\left(q_{1}, q_{2}, q_{3}\right)$ all $Q_{i} \cdot Q_{j}$ large
- SD3: $\left.\frac{\delta \Pi^{\mu \nu \lambda \sigma}\left(q_{1}, q_{2}, q_{3}\right)}{\delta q_{4 \rho}}\right|_{q_{4}=0}$ with $Q_{1}^{2} \sim Q_{2}^{2} \sim Q_{3}^{2} \gg \Lambda_{Q C D}^{2}$ JB,LL,NHT,ARS 19-21
- SD2: $\left.\frac{\delta \Pi^{\mu \nu \lambda \sigma}\left(q_{1}, q_{2}, q_{3}\right)}{\delta q_{4 \rho}}\right|_{q_{4}=0}$ and $Q_{1}^{2} \sim Q_{2}^{2} \gg Q_{3}^{2}\left(\gg \Lambda_{Q C D}^{2}\right)$ Melnikov-Vainshtein 03

Implementation

Lund
 UNIVERSITY

Short-distance constraints

Johan Bijnens

General
Implementation

- Varying the transitions can help with error estimates
- Make sure to avoid double counting: splitting the integration over different regions is a good way to avoid this

Implementation

Lund
 UNIVERSITY

Short-distance constraints

Johan Bijnens

- For hadronic sub-parts: talks by Kubis, Stoffer
- For the full four-point function: talk by Rebhan
- Some general comments:
- Brodsky-Lepage constraints together with full n-point functions SDC often require an infinite number of resonances for obeying both JB,Gamiz,Lipartia,Prades 2003
- Have a model that fully implements SDC and then integrate everywhere
- Have a good description in the intermediate domain, use QCD expressions to do the short-distance part of the integration
- Varying the transitions can help with error estimates
- Make sure to avoid double counting: splitting the integration over different regions is a good way to avoid this

Quark-loop

Short-distance constraints
Johan Bijnens

- Use (constituent) quark-loop
- Used for full estimates since the beginning (1970s)
- Used for short-distance estimates with mass as a cut-off JB, Pallante, Prades, 1996
- Has been recalculated by many people in many ways

Quark-loop: u, d, s

UNIVERSITY

Short-distance constraints

Johan Bijnens

Introduction
HLbL
overview
SDC
Quark-loop
Quark-loop
constituent
SD4: naive
SD3: correct

- About 12×10^{-11} from above 1 GeV for $M_{Q}=0.3 \mathrm{GeV}$
- About 17×10^{-11} from above 1 GeV for $M_{Q}=0$

Quark-loop

LUND

UNIVERSITY

Short-distance constraints

Johan Bijnens

- Is it a first term in a systematic OPE?
- YES: JB, N. Hermansson-Truedsson, L. Laub, A. Rodríguez-Sánchez
- Phys.Lett. B798 (2019) 134994 [arxiv:1908.03331]: principle and next nonperturbative term
- JHEP 10 (2020) 203 [arxiv:2008.13487]: proper description and up to NNLO nonperturbative terms
- JHEP 04 (2021) 240 [arxiv:2101.09169]: perturbative correction
- Higher order terms are not just the quark-loop

Short-distance: first attempt

$$
\Pi^{\mu \nu \lambda \sigma}=-i \int d^{4} x d^{4} y d^{4} z e^{-i\left(q_{1} \cdot x+q_{2} \cdot y+q_{3} \cdot z\right)}\left\langle T\left(j^{\mu}(x) j^{\nu}(y) j^{\lambda}(z) j^{\sigma}(0)\right)\right\rangle
$$

Short-distance constraints
Johan Bijnens

- Due to the symmetries: $1 / q_{4}^{2}$ essentially unavoidable

Short-distance: correctly

Lund
 UNIVERSITY

- Similar problem in QCD sum rules for electromagnetic radii and magnetic moments
- loffe, Smilga, Balitsky, Yung, 1983
- For the q_{4}-leg use a constant background field and do the OPE in the presence of that constant background field

Johan Bijnens

- Use radial gauge: $A_{4}^{\lambda}(w)=\frac{1}{2} w_{\mu} F^{\mu \lambda}$ whole calculation is immediately with $q_{4}=0$.
- First term is exactly the massless quark-loop

SD3: correct
SD: numerical
SD: perturbative

- 3 quark currents close

Short-distance: next term(s)

- Do the usual QCD sum rule expansion in terms of vacuum condensates

Short-distance constraints

- There are new condensates, induced by the constant magnetic field:

$$
\left\langle\bar{q} \sigma_{\alpha \beta} q\right\rangle \equiv e_{q} F_{\alpha \beta} X_{q}
$$

- Lattice QCD Bali et al., arXiv:2004.08778
- Only starts at $1 / Q^{2}$ via $m_{q} X_{q}$ corrections to the leading quark-loop result
- X_{q} and m_{q} are very small, only a very small correction
- X_{q} : contain IR divergent perturbative parts, combine with the m_{q}^{2} corrections from the quark-loop consistently
- Next order: very many condensates contribute, lots of IR mixing and redefinitions.
- Infrared divergences absorbed in the condensates

Results

Short-distance constraints

Johan Bijnens

Introduction
HLbL
overview
SDC
Quark-loop
SD4: naive
SD3: correct
SD: numerical
SD: perturbative

Short-distance: nonperturbative numerical results

Lund
 UNIVERSITY

Order	Contribution	$Q_{\min }=1 \mathrm{GeV}$	$Q_{\min }=2 \mathrm{GeV}$
$1 / Q_{\min }^{2}$	quark-loop	$1.73 \cdot 10^{-10}$	$4.35 \cdot 10^{-11}$
$1 / Q_{\min }^{4}$	quark-loop, m_{q}^{2}	$-5.7 \cdot 10^{-14}$	$-3.6 \cdot 10^{-15}$
	$X_{2, m}$	$-1.2 \cdot 10^{-12}$	$-7.3 \cdot 10^{-14}$
$1 / Q_{\min }^{6}$	$X_{2, m^{3}}$	$6.4 \cdot 10^{-15}$	$1.0 \cdot 10^{-16}$
	X_{3}	$-3.0 \cdot 10^{-14}$	$-4.7 \cdot 10^{-16}$
	X_{4}	$3.3 \cdot 10^{-14}$	$5.3 \cdot 10^{-16}$
	X_{5}	$-1.8 \cdot 10^{-13}$	$-2.8 \cdot 10^{-15}$
	X_{6}	$1.3 \cdot 10^{-13}$	$2.0 \cdot 10^{-15}$
	X_{7}	$9.2 \cdot 10^{-13}$	$1.5 \cdot 10^{-14}$
	$X_{8,1}$	$3.0 \cdot 10^{-13}$	$4.7 \cdot 10^{-15}$
	$X_{8,2}$	$-1.3 \cdot 10^{-13}$	$-2.0 \cdot 10^{-15}$

Short-distance constraints

- $Q_{1}, Q_{2}, Q_{3} \geq Q_{\text {min }}$
- Nonperturbative short-distance corrections are small
- Suppression by small quark masses or small condensates
- Nonperturbative short-distance corrections are small

Short-distance: $1 / Q_{\min }^{2}$

- Can we understand scaling with $Q_{\text {min }}$?
- $a_{\mu}=\frac{2 \alpha^{3}}{3 \pi^{2}} \int_{0}^{\infty} d Q_{1} d Q_{2} Q_{1}^{3} Q_{2}^{3} \int_{-1}^{1} d \tau \sqrt{1-\tau^{2}} \sum_{i=1,12} \hat{T}_{i} \bar{\Pi}_{i}$

Short-distance constraints

Johan Bijnens

Introduction
HLbL
overview $T_{1} \sim \lambda^{-8}, T_{2,3,4} \sim \lambda^{-6}, T_{5, \ldots, 12} \sim \lambda^{-4}$

- Put all together: quark-loop scales as $a_{\mu}^{\mathrm{SD}} \mathrm{ql} \sim \lambda^{-2}$
- $m_{q} X_{q}$ adds an overall factor $\Longrightarrow a_{\mu}^{\mathrm{SD} X_{q}} \sim \lambda^{-4}$
- Note it agrees with Dominik's argument

Perturbative corrections

UNIVERSITY

Short-distance constraints

- Representative diagram:

- Dimensional regularization: $d=4-2 \epsilon$
- All $1 / \epsilon^{3}, 1 / \epsilon^{2}, 1 / \epsilon$ cancel
- Several independent calculations that agree
- Find some typos in integral papers (I hate signs)

Perturbative corrections

- Use method of master integrals: disadvantage: large numerical cancellations

Short-distance constraints

- Especially near $\lambda=Q_{1}^{4}+Q_{2}^{4}+Q_{3}^{4}-2 Q_{1}^{2} Q_{2}^{2}-2 Q_{2}^{2} Q_{3}^{2}-2 Q_{3}^{2} Q_{1}^{2}=0$

- $Q_{1}+Q_{2}+Q_{3}=\Lambda$
- $Q_{1}, Q_{2}, Q_{3} \geq \mu=Q_{\text {min }}$
- Need to expand on sides and corners
- Up to $1 / \lambda^{4}$ occurs
- Analytical expressions for all regions available
- Simple for symmetric point and corners

Perturbative corrections: numerics

	Quark loop	Gluon corrections ($\frac{\alpha_{s}}{\pi}$ units)
$\bar{\Pi}_{1}$	0.0084	-0.0077
$\bar{\Pi}_{2}$	13.28	-12.30
$\bar{\Pi}_{3}$	0.78	-0.87
$\bar{\Pi}_{4}$	-2.25	0.62
$\bar{\Pi}_{5}$	0.00	0.20
$\bar{\Pi}_{6}$	2.34	-1.43
$\bar{\Pi}_{7}$	-0.097	0.056
$\bar{\Pi}_{8}$	0.035	0.41
$\bar{\Pi}_{9}$	0.623	-0.87
$\bar{\Pi}_{10}$	1.72	-1.61
$\bar{\Pi}_{11}$	0.696	-1.04
$\bar{\Pi}_{12}$	0.165	-0.16
Total	17.3	-17.0

- a_{μ} from integration from $Q_{\text {min }}=1 \mathrm{GeV}$ in 10^{-11} units.
- Naive scaling to other $Q_{\text {min }}$ applies (up to $\alpha_{S}\left(Q_{\min }\right)$)
- $a_{\mu}^{\text {HLbL SD gluonic }}=$ -1.710^{-11}
- $Q_{\text {min }}=1 \mathrm{GeV}$, $\alpha_{S}=0.33$
- Main uncertainty: how to handle α_{S}
- No sign that it is very large (about -10\%)

Perturbative corrections: numerics

Short-distance constraints

- Uncertainty estimated by $\alpha_{S}(\mu)$ with $Q_{\text {min }} / \sqrt{2} \leq \mu \leq \sqrt{2} Q_{\text {min }}$
- Running $\alpha_{S}\left(M_{z}\right)$ at 5 loops to $\alpha_{S}\left(m_{\tau}\right)$ or $\alpha_{S}(\mu)$

Nonperturbative corrections: numerics

LUND
 UNIVERSITY

Short-distance constraints

Johan Bijnens

Introduction
HLbL
overview
SDC
Quark-toop
SD4: naive
SD3: correct
SD: numerical
SD: perturbative SD2: MV

MV short-distance

- K. Melnikov, A. Vainshtein, Phys. Rev. D70 (2004) 113006. [hep-ph/0312226]

Short-distance constraints

- take $Q_{1}^{2} \approx Q_{2}^{2} \gg Q_{3}^{2}$: Leading term in OPE of two vector currents is

Johan Bijnens proportional to axial current

- $\Pi^{\rho \nu \alpha \beta} \propto \frac{P_{\rho}}{Q_{1}^{2}}\langle 0| T\left(J_{A \nu} J_{V_{\alpha}} J_{V \beta}\right)|0\rangle$
- J_{A} comes from

- Coefficient of J_{A} has α_{S} and higher order OPE corrections
- AVV triangle anomaly: in particular nonrenormalization theorems
- fully for longitudinal $\left(\bar{\Pi}_{i}, i=1,2,3\right)$
- perturbative for the others
- Implications recent overview: M. Knecht, JHEP 08 (2020) 056 [arXiv:2005.09929], P. Masjuan, P. Roig, and P. Sanchez-Puertas, arXiv:2005.11761
- See also Colangelo et al, JHEP 03 (2020) 101 [arXiv:1910.13432], arXiv:2106.13222

Short-distance: MV

- Only a proper prediction for $\hat{\Pi}_{1}$
- $\bar{Q}_{3}=Q_{1}+Q_{2}, Q_{3} \ll Q_{1}, Q_{2}$
- $\hat{\Pi}_{1}=\frac{e_{q}^{4}}{\pi^{2}} \frac{-12}{Q_{3}^{2} \mathbf{Q}_{3}^{2}}\left(1-\frac{\alpha_{S}}{\pi}\right)$
- The quark-loop and its gluonic correction reproduce this
- JB,NHT,ARS in progress: calculate the corrections: gluonic and OPE
- Next term in OPE has a number of features (from our corner expansions):
- $\log \frac{Q_{3}^{2}}{\bar{Q}_{3}^{2}}$ show up already at $\alpha_{S}=0$
- For some of the terms the gluonic corrections dominate
- Should allow to resum some of the large corrections of the corners

Conclusions

- We have shown that the massless quarkloop really is the first term of a proper OPE expansion for the HLbL
- We have shown how to properly go to higher orders
- We have calculated the next two terms in the OPE
- NLO: suppressed by quark masses and a small X_{q}
- NNLO: large number of induced condensates but all small
- Numerically not relevant at the present precision
- Gluonic corrections about -10%
- Why do this: matching of the sum over hadronic contributions to the expected short distance domain
- Finding the onset of the asymptotic domain
- The MV limit provides constraints on models (but there are α_{S} and higher order corrections)

