Spectroscopy of Heavy Quark Hadrons from QCD

Makoto Oka Tokyo Institute of Technology

FPCP2015, Nagoya *May 28, 2015*

1. Introduction: From QCD to Hadron Spectrum

- 2. Quarkonium
- 3. Light Exotic Hadrons
- 4. Diquarks in Heavy Baryons
- 5. Conclusion

Introduction: From QCD to Hadron Spectrum

QCD = quarks + gluons with color SU(3)_c gauge symmetry $\mathcal{L} = \bar{q}(i\mathcal{D} - m_q)q - \frac{1}{2}\text{Tr}[G_{\mu\nu}G^{\mu\nu}]$ expected low energy modes

massless gluons light quarks (m_q < 10 MeV)

QCD = quarks + gluons with color SU(3)_c gauge symmetry $\mathcal{L} = \bar{q}(i\mathcal{D} - m_q)q - \frac{1}{2}\text{Tr}[G_{\mu\nu}G^{\mu\nu}]$

expected low energy modes massless gluons light quarks (m_q < 10 MeV)

In reality,

massless gluons => glueballs (m_{GB} ~ 1.4 GeV or larger)

light quarks

=> mesons (500~800 MeV) except for pion, Kaon baryons (900 MeV ~)

QCD (a) low energy is strongly correlated. **1. coupling constant runs** $\Lambda_{\rm QCD}^{(4)} \sim 300 \text{ MeV}$

2. color confinement mass gap : color singlet = hadrons

QCD (a) low energy is strongly correlated. **1. coupling constant runs** $\Lambda_{\rm OCD}^{(4)} \sim 300 \text{ MeV}$

2. color confinement mass gap : color singlet = hadrons

♯ Scale anomaly ← gluon condensate

$$\partial_{\mu} j_{D}^{\mu} = \sum_{q} m_{q} \bar{q} q + \frac{\beta(\alpha_{s})}{\alpha_{s}} \operatorname{Tr}[G_{\mu\nu}G^{\mu\nu}]$$
$$\langle (\alpha_{s}/\pi)G^{\mu\nu}G_{\mu\nu}\rangle \sim (350 \mathrm{MeV})^{4} \sim \Lambda^{4}$$

Chiral symmetry breaking \leftarrow quark condensates $SU(N_f)_R \times SU(N_f)_L \rightarrow SU(N_f)_V$ $\langle \bar{q}q \rangle = \langle \bar{q}_L q_R + \bar{q}_R q_L \rangle \neq 0$ $\langle \bar{u}u \rangle \simeq \langle \bar{d}d \rangle \sim -(250 \text{ MeV})^3 \sim O(\Lambda^3)$ **#** Low energy dof: "constituent quark" with mass $M_q \sim m_q - G_\chi \langle \bar{q}q \rangle \sim 300 \text{MeV} \sim O(\Lambda)$

QCD Lagrangian is flavor independent, but the coupling constant runs.

QCD Lagrangian is flavor independent, but the coupling constant runs.

Quarkonium

Quarkonium

- After 50 years since it was born, the quark model gives very good guidelines to classify and interpret the hadron spectrum.
- The charmonium spectrum is a textbook example. *"hydrogen atom" in QCD*
- The Hamiltonian with a Linear + Coulomb potential
 V(r) = -e/r + σr
 E. Eichten, et al., PRL 34 (1975) 369
 gives a good fit to the 1S, 1P, 2S, ...
 charmonium (and bottomonium)
 states.

Charmonium spectra on Lattice

Liuming Liu, et al. (Hadron Spectrum Collaboration) JHEP 07, 126 (2012)

Charmonium spectra on Lattice

Liuming Liu, et al. (Hadron Spectrum Collaboration) JHEP 07, 126 (2012)

New Charmonium-like States

- **X(3872) found in 2003 by Belle (KEK)**
- **Z**(3900), Z(4430) etc. : Charged hidden charm states

New Charmonium-like States

- **X(3872)** @ Belle, J^{PC}=1⁺⁺, confirmed @ LHCb, *PRL 110 (2013)*
- **♯** X(3872) is NOT a cc^{bar} state, because . .
 - Its mass, just at the DD* threshold, is significantly lower than χ_{c1}(2P) prediction. (cf. χ_{c2}(2P)=3930MeV)
 - **Decay** $\rightarrow \gamma \psi(2S)$ is suppressed.
 - The isospin violation observed in the decays $X(3872) \rightarrow J/\psi + \rho \quad (I=1)$ $\rightarrow J/\psi + \omega \quad (I=0)$ indicates a strong coupling to D⁰D^{0*}(3872).

New Charmonium-like States

Z(4430) confirmed at LHCb, PRL 112, 222002 (2015) in $B^0 \rightarrow \psi' \pi^- K^+$ decay spectrum

Above the threshold $q\bar{q}$ creation and rearrangement of multiquarks

Exotic States on Lattice

I $Z_c(3900)$ v.s. $(D^{bar}D^*) + (\pi J/\psi)$ using the HAL QCD method Y. Ikeda for HALQCD @ NSTAR2015 (in preparation)

Exotic States on Lattice

I $Z_c(3900)$ v.s. $(D^{bar}D^*) + (\pi J/\psi)$ using the HAL QCD method Y. Ikeda for HALQCD @ NSTAR2015 (in preparation)

Light Exotic Hadrons

- Light hadrons
 The low-lying hadrons with u, d, s quarks form complete patterns of the SU(3)_f representations.
- **SU(3)** Symmetry is the basis of the constituent quark model.

mesons with qq^{bar}

baryons with qqq

Light baryon spectra by R.G. Edwards et al., PRD84 (2011)
 074508, are consistent with the SU(6)×O(3) quark model.

Light baryon spectra by R.G. Edwards et al., PRD84 (2011)
 074508, are consistent with the SU(6)×O(3) quark model.

- Lattice QCD has confirmed that the overall features of the low-lying hadron spectrum are given consistently as the constituent quark model.
- Yet, there are some (exotic) hadrons which are not reproduced in LQCD by simple qq^{bar} or qqq operators.
- A few prominent examples:
 Light scalar mesons, Roper resonance(s), Λ(1405), . .
- **#** Recent analyses have "confirmed" the exotic properties of $\Lambda(1405)$.

Λ(1405)

 Recent LQCD analysis by J.M.M. Hall et al. PRL 114, 132002 (2015) (ArXiv:1411.3402), claims K^{bar}N dominance.

Recent LQCD analysis by J.M.M. Hall et al. PRL 114, 132002 (2015) (ArXiv:1411.3402), claims K^{bar}N dominance.

Λ(1405)

\blacksquare $\Lambda(1405)$ as a K^{bar} N "bound" (molecule) state

Chiral unitary approaches predict *two resonance poles for* $\Lambda(1405)$. (Jido et al., 2003) They originate from a K^{bar}N bound state and a $\pi\Sigma$ resonance. (Hyodo, Weise)

HQ mass dependence: $m_Q = m_S \rightarrow m_C$ transition from SU(3) to HQ symmetry *P. Gubler, T.T. Takahashi, M.O., in preparation*

Diquarks in Heavy Baryons

Strange v.s. Charm/Bottom

25

Heavy Quark Spin Symmetry

Magnetic gluon coupling is suppressed

$$\bar{\Psi}\gamma^{\mu}\frac{\lambda^{a}}{2}\Psi A^{a}_{\mu} \sim \Psi^{\dagger}\frac{\lambda^{a}}{2}\Psi A^{a}_{0} - \Psi^{\dagger}\sigma\frac{\lambda^{a}}{2}\Psi\cdot\frac{1}{m_{Q}}(\nabla\times A^{a})$$
(Color Electric coupling) » (Color Magnetic coupling)
HQ spin-flip amplitudes are suppressed by (1/m_Q).
 \Rightarrow Heavy Quark Spin Symmetry

Heavy Quark Spin Symmetry

HQ spin symmetry $[S_Q, H] = O\left(\frac{1}{m_O}\right)$

$$\vec{qq}$$
 = $\vec{S}_Q + \vec{j}_L$ $\vec{j}_L = \vec{S}_q + \vec{L}_q$

 $J = j_L \pm \frac{1}{2}$ states are degenerate in the HQ limit.

- Color magnetic interaction (CMI) of the OgE is attractive for the scalar diquark.
- Instanton Induced Interaction (III) is attractive in the flavor antisymmetric states
 Rough estimate: S(0⁺) v.s. A(1⁺) M(1⁺)-M(0⁺) = (2/3) [M(Δ)- M(N)] ~ 200 MeV

Heavy Baryons, Λ_Q, Σ_Q = Q + (qq)
 Because the spin dependent interaction is suppressed between the heavy Q and light quarks, the heavy baryon spectrum will reflect the light diquark (qq) *spin-dependent* correlation.

		J^{π}	color	flavor
Pseudoscalar	$\epsilon_{abc}(u_a^T C d_b)$	0-	3	$\bar{3}$ $(I=0)$
Scalar	$\epsilon_{abc}(u_a^T C \gamma^5 d_b)$	0+	3	$\bar{3}$ $(I=0)$
Vector	$\epsilon_{abc}(u_a^T C \gamma^\mu \gamma^5 d_b)$	1-	3	$\bar{3}$ $(I=0)$
Axial Vector	$\epsilon_{abc}(u_a^T C \gamma^\mu d_b)$	1+	Ī	6 (I = 1)
	$\epsilon_{abc}(u_a^T C \sigma^{\mu\nu} d_b)$	$1^+, 1^-$	$\overline{3}$	6 (I = 1)
color 6	$(u_a^T C d_b) + (a \leftrightarrow b)$	0-	6	6 (I = 1)
only in	$(u_a^T C \gamma^5 d_b) + (a \leftrightarrow b)$	0+	6	6 (I = 1)
Exotic Hadrons	$(u_a^T C \gamma^\mu \gamma^5 d_b) + (a \leftrightarrow b)$	1-	6	6~(I=1)
	$(u_a^T C \gamma^\mu d_b) + (a \leftrightarrow b)$	1+	6	$\bar{3}$ $(I=0)$
	$(u_a^T C \sigma^{\mu\nu} d_b) + (a \leftrightarrow b)$	$1^+, 1^-$	6	$\bar{3}$ $(I = 0)$

Diquarks in (quenched) lattice calculations

- Hess, Karsch, Laermann, Wetzorke, PR D58, 111502 (1998) M(0⁺) ~ 694 MeV, M(1⁺) ~ 810 MeV (Landau gauge)
- Alexandrou, de Forcrand, Lucini, PRL 97, 222002 (2006) gauge invariant calculation in *a Qqq system* M(1⁺) - M(0⁺) ~ 100-150 MeV
- Babich, et al., PR D76, 074021 (2007) M(1⁺) - M(0⁺) ~162 MeV (Landau gauge)
- DeGrand, Liu, Schaefer, PR D77, 034505 (2008)
 S: strongly attractive, PS: attractive for small m_q
- **#** The scalar 0⁺ diquark has a strong attractive correlation.

Probabilities of λ and ρ modes v.s. heavy quark mass
 by a Hamiltonian quark model with spin-spin, spin-orbit and tensor forces

Yoshida, Sadato, Hosaka, Hiyama, MO, in preparation.

$\Xi_c = csu, csd, strange diquarks$

\ddagger [us]_J, [ds]_J diquarks are probed by the Ξ_c spectrum

Scalar diquark as a new building block. $D^{\text{bar}}=qq$: color 3^{bar} , spin-parity 0^+ , flavor 3^{bar} in SU(3) $U = [\bar{d}\bar{s}]_{C=3,J=0,F=3}, \quad D = [\bar{s}\bar{u}]_{3,0,3}, \quad S = [\bar{u}\bar{d}]_{3,0,3}$

- diquark "meson" D $D^{bar} \rightarrow tetra-quark$
- di-diquark "baryon" D-D-q → pentaquark
- tri-diquark "dibaryon" $D^3 \rightarrow$ dibaryon color 1, flavor 1, H dibaryon $H = [\overline{U}\overline{D}\overline{S}]_A = [uuddss]$
- diquark matter: color superconductivity
 U^{bar}+D^{bar}+S^{bar} condensates: color-flavor locking (CFL)
 S^{bar}: 2SC (U^{bar}: uSC D^{bar}: dSC)

Scalar diquark as a new building block. $D^{\text{bar}}=qq$: color 3^{bar} , spin-parity 0^+ , flavor 3^{bar} in SU(3) $U = [\bar{d}\bar{s}]_{C=3,J=0,F=3}, \quad D = [\bar{s}\bar{u}]_{3,0,3}, \quad S = [\bar{u}\bar{d}]_{3,0,3}$

- diquark "meson" D D^{bar} → tetra-quark
- di-diquark "baryon" D-D-q → pentaquark
- tri-diquark "dibaryon" $D^3 \rightarrow$ dibaryon color 1, flavor 1, H dibaryon $H = [\overline{U}\overline{D}\overline{S}]_A = [uuddss]$
- diquark matter: color superconductivity U^{bar}+D^{bar}+S^{bar} condensates: color-flavor locking (CFL) S^{bar}: 2SC (U^{bar}: uSC D^{bar}: dSC)

Conclusion

- Spectroscopy of heavy quark hadrons requires new concepts, i.e., multi-quark states, hadron molecules, heavy quark spin symmetry, diquark correlations, etc.
- Heavy baryon spectroscopy is used for the di-quark spectroscopy.
- In order to draw the complete picture of the heavy hadron spectrum, further experimental data are essential, both in quantity and in quality.
- It is important to carry out various experimental methods using the facilities, such as Belle, BES (e⁺e⁻ collider), JLab (e), LHCb (hadron collider), J-PARC (p, π, K), PANDA (p^{bar}).