# Development of Geant4 based simulation for Super-Kamiokande

## M.Harada (Okayama Univ.)

Y.Koshio, K.Hagiwara(Okayama Univ.), For Super-Kamiokande Collaborator

**1. Introduction** 

## **Super-Kamiokande(SK)**

- SK is the world largest Water-Cherenkov neutrino detector.
- <u>SK will start new phase, that is "SK-Gd project"</u>, which dissolve Gadolinium in SK water for Supernova relic neutrino(SRN) and other neutrino search.
- Toward SK-Gd, SK tank refurbishment work has been conducted in 2018, and now restart pure water operation.
- In SK-Gd, γ-ray signal from neutron capture (n-capture) of Gd can be detected. So, inverse beta



## **Simulation tool of SK**

- Currently, SK simulation uses Geant3(SKDetSim), which is detector simulation written in FORTRAN. And the update of physics model is already stopped.
- For the next 10 years SK operation, up-to-date detector simulation is needed. Especially for SRN search in SK-Gd, precise neutron simulation is crucial.
- Therefore, we try to develop Geant4 based SK simulation software, named <u>"SKG4"</u>.[1]
- SKG4 will be the first overall simulation software of SK-Gd.

## What's new of SKG4

- The latest physics model suitable for SK can be used.
- The model of  $\gamma$ -ray emitted from Gd(n,  $\gamma$ ) uses the world highest accuracy experiment results.[2]



measurement.

#### • $\rightarrow$ **Precise simulation of neutrino and neutron will be possible.**

## 2. Geometry of SK

#### **Geometry of SK tank**

- Geometry of inner tank was already completed, it is based on the latest SKDetSim. (Fig. 2)
- SK has outer detector(OD) to separate the cosmic ray signal.→<u>Remaining work</u>

#### Light detector(PMT)

- All(11129) PMT in inner tank is already completed(Fig.3), and installed in the tank.
- <u>There were no difference with SKDetSim in</u> <u>the structure.</u>





Figure 2 : Inner detector geometry of SK. The shape of tank is reproduced by the cylinder.

### ✓SKG4 is now ready to compare

with SKDetSim and real SK

calibration data.

## 4. Results

#### **n-capture Physics**

- These behaviors were compared between Gd-water and pure water.
  - 1. Neutron capture time and distance (Table 1).
  - 2. Probability of n-Capture(Fig. 6).



Figure 6 : Emitted  $\gamma$ -rays from n-capture(Figure). Probability of n-Capture(Table). ~90% neutron is captured by Gd.[3]

|                           | Time     | Distance  |
|---------------------------|----------|-----------|
| Capture by p (Pure water) | 196±3 µs | 107±60 mm |
| Capture by p (Gd-water)   | 18±1 µs  | 68±31 mm  |
| Capture by Gd (Gd-water)  | 27±1 µs  | 70±33 mm  |

Table 1 : Neutron capture time and distance. Capture time of Gd is  $\sim$ 27 µsec, distance is <50 cm for 200 keV neutron.

#### • The model of $\gamma$ -ray emission was compared.



Figure 7 : Model comparison of  $\gamma$ -ray from Gd. The model used SKG4 is higher accuracy than Geant4 typical model.[2]



Figure 3: Inner tank PMT geometry of SK

## **3. Physics Comparison**

### Neutron capture(n-capture) process from Gd

- Gd(n, $\gamma$ ) process is crucial for SK-Gd project. When Gd capture a neutron, Gd emit  $\gamma$ -rays with total ~8 MeV.
- In SKG4, high accuracy model based on the experiment was adopted for  $\gamma$ -rays from Gd n-capture.

## **Optical Process**

- Optical photon behavior is one of the most important in SK physics.
- In Geant4, Scattering and, Absorption, Material Boundary physics (Refraction, Reflection) are defined as Optical process.

### **Situation of Comparison**

- n-capture Physics : 200 keV neutron was emitted from center of tank, some behaviors of n-capture process were compared.(Fig. 4)
- Optical Physics : Photons were emitted





Figure 4 : n-capture physicsFigure 5 : Optical comparisoncomparison method. 200 keVmethod. Optical photon emitneutron emit from center of tank.from (0,0,1800), to downward.

✓n-Capture of Gd for SK-Gd was estimated using experimental data.

## **Optical Physics**

- Absorption was compared by the reduction of PMT hit. (Fig. 8)
- Scattering was compared by the timing distribution in each Z-axis region.
  -Wave length : 350(Fig. 9), 450, 550, 650 (nm).
- Each distributions were consistent with SKDetSim.



#### ✓ Optical physics of SKG4 is



from top of tank. PMT hit position and hit timing were compared.(fig. 5)



Figure 9 : Timing distribution of PMT hit in each Z-axis region. This is the example of wave length 350 nm.

[2] K.Hagiwara et al. Prog. Theor. Exp. Phys. (2018), arXiv:1809.02664v1
[3] Beacom and Vagins. Phys. Rev. Lett. 93,171101 (2004)

## 5. Conclusion & Future work

### **Conclusion**

- \*SK-Gd project will start soon, so we try to construct new Simulation for SK-Gd, named "SKG4".
- \*Geometry of SK tank and PMT were reproduced in Geant4, except for the outer detector.
- \* Some physics models were installed and compared with SKDetSim.
- $\rightarrow$ Optical process was correctly installed and Gd(n, $\gamma$ ) process was evaluated. **Remaining work**
- \* Outer detector PMT, which shape is different from inner PMT construction.
- \*Comparison of 1 GeV muon, and electron with higher energy than 10MeV.
- \*Comparison with SK calibration data and tuning SKG4.

## **Future work**



\* During pure-water operation, SKG4 will be tuned and used for the pure water SK analysis.\* After dissolving Gd in SK water, SKG4 will be used for various analyzes in SK-Gd.