Measurement of gamma-rays from neutron-oxygen reaction for neutrino-nucleus interaction

Toshiaki Horai, Okayama University

Introduction

Supernova Relic Neutrino : SRN

Superposition of neutrinos emitted by supernova in past. SRN is important for the **Stellar evolution, Nucleosynthesis**.

T2K experiment

Long baseline neutrino experiment shoot from J-PARC to SK. The cherenkov angle distribution has inconsistency between simulation

and real data. (Fig.1). It is caused by secondary gamma. (Fig.2)

Number of events		RUN1-3 data NCQE NC non-QE CC Beam-unrelated
0-	20 40	60 80
Fig1	cherenkov ar	neienkov angle ()

Signal Back		round		
	NCQE	NC non-QE	$\mathbf{C}\mathbf{C}$	Unrel.
Fraction of Sample	68%	26%	4%	2%
Flux	11%	10%	12%	-
Cross sections	-	18%	24%	-
Primary γ production	15%	3%	9%	-
Secondary γ production	13%	13%	7.6%	-
Detector response	2.2%	2.2%	2.2%	-
Oscillation Parameters	-	-	10%	-
Total Systematic Error	23%	25%	31%	0.8%

Table L. systematic unce

Fig2. Schematic view of secondary

gamma production

Neutral Current Quasi Elastic scattering

NCQE by atmospheric neutrino is one of main background for SRN search in Super-Kamiokande with Gadolinium (SK-Gd).

Motivation

Improve the uncertainty of secondary gamma production. Our goal is that it reduced less than 5%.

Analysis of 30 MeV run

HPGe energy distribution : water target

Neutron selection

Use the Pulse shape discrimination (| PSD) method. Output waveform depends on incident particles.

 $6.13 MeV \mid ^{16}O(n, n')^{16}O^*$

5.27 MeV $|^{16}O(n,n')^{16}O^*$ then ${}^{16}O^* \rightarrow {}^{15}N^* + p$, or ${}^{16}O(n,np)^{15}N^*$, or ${}^{16}O(n,d)^{15}N^*$ 4.44*MeV* $|^{16}O(n,n')^{16}O^*$ then ${}^{16}O^* \rightarrow {}^{12}C^* + \alpha$, or ${}^{16}O(n,n\alpha)^{12}C^*$ We calculate the gamma ray cross section each energy.

Neutron flux was obtained from kinetic energy distribution after efficiency correction.

Detector efficiency Calculated by SCINFUL-QMD MC (Fig6)

√10°	
~10	
—	

Conclusion & Outlook

We calculated neutron beam flux.

Estimation of the systematic uncertainty of neutron flux, Gamma ray cross section, 250 MeV analysis is in progress.