

The plan

Is this the end of cosmic concordance?

- * The standard cosmological model
- The Hubble constant tension
- Tension detection
 - ...when things get complicated...
- Growth tensions

The Standard Cosmological Mode

The universe as a physics laboratory

High resolution pictures of our Universe

(from the Planck satellite)

Marco Raveri

planck

High resolution pictures of our Universe

years later...

(from the Dark Energy Survey)

The modern picture of our Universe

(according to all cosmological data sets we have now...)

The modern picture of our Universe

(a small Marco close to the surveys I am involved in...)

The Hubble tension

The Hubble constant tension:

(image credit NASA/WMAP Science Team)

The Hubble constant tension: direct measurement

Measure distance of ~ nearby objects, measure redshifts $\rightarrow H_0 = 73.15 \pm 0.97 \text{ km/s/Mpc}$

Conceptually not (too) different from original method

(Hubble's 1929 paper and arXiv:2208.01045)

The Hubble constant tension: direct measurement

Today's more complicated distance ladder to mitigate systematics: tradeoff between going far and going faint

(image credit NASA)

Marco Raveri

The Hubble constant tension: CMB inference

Take a Fourier transform (on the sphere..)

(image credit NASA)

Consonance and dissonance

Second calibrator: power spectrum of CMB temperature fluctuations

(Planck 2018 cosmological parameters, arXiv:1807.06209)

Marco Raveri

Consonance and dissonance: gravitational ringing

Potential wells = inflationary seeds of structure

Photons and baryons fall into wells pressure due to Thompson scattering resists: **acoustic oscillations**

(credit Wayne Hu)

Consonance and dissonance: seeing sound

(Planck 2018 cosmological parameters, arXiv:1807.06209)

Consonance and dissonance: timbre of the Universe

 $\rho_X \sim \Omega_X h^2$ (physical and relative densities)

Peak heights and pre-recombination physics: $\Omega_r h^2, \Omega_b h^2$ and $\Omega_{dm} h^2 \rightarrow r_s$ sound horizon

Conceptually like a musical instrument: different instruments (models) playing the same pitch are distinguished by the structure of the spectrum

Consonance and dissonance: timbre of the Universe

(image credit Tristan Smith)

Gaussian estimators of 1D tensions

(exact for Gaussian models with only 1 parameter)

(can be shown to be unique in 1D)

The Hubble constant tension:

From CMB inference
$$H_0 = 67.4 \pm 0.5$$
 km/s/Mpc

From direct measurement $H_0 = 73.15 \pm 0.97$ km/s/Mpc

 $\sim 8~\%$ discrepancy between early and late time calibration of distances detected at $\sim 5\sigma$

Measuring tensions

Agreement or disagreement?

Seemingly easy question: do experiments agree?

(Based on some work in DES)

Marco Raveri

(for the cosmologists, it is Euclid)

Projections of the parameter space might hide discrepancies Do they agree? (arbitrary units) പ 0.20.02 0.03 0.04 0.0 0.8 1.20.01 0.40.91.01.1 $\Omega_b h^2$ $\Omega_c h^2$ $100\theta_{MC}$

What are these data sets?

Projections of the parameter space might hide discrepancies

Do they agree? No, to 5 sigma

What are these data sets? Planck CMB and local Hubble constant

(made up posteriors from Lemos, MR et al arXiv:2012.09554)

(made up posteriors from Lemos, MR et al arXiv:2012.09554)

Testing concordance: the tools of the trade

Theoretical papers that I will talk about:

- Raveri and Hu, "Concordance and Discordance in Cosmology" arXiv 1806.04649
- Raveri, Zacharegkas, Hu, "Quantifying concordance of correlated cosmological data sets" arXiv 1912.04880
- Raveri and Doux, "Non-Gaussian estimates of tensions in cosmological parameters" **arXiv 2105.03324**

Code implementation (in Python, with several example notebooks)

~ pip install tensiometer

Relies on GetDist for handling parameter distributions

~ pip install getdist

...and tensorflow for ML methods ... which complicates installation...

Gaussian estimators: parameter differences 1D

(exact for Gaussian models with only 1 parameter)

Gaussian estimators: parameter differences ND

ND parameter shifts

$$Q_{\rm DM} \equiv (\theta_p^1 - \theta_p^2)^T (\mathcal{C}_{p1} + \mathcal{C}_{p2} - \mathcal{C}_{p1} \mathcal{C}_{\Pi}^{-1} \mathcal{C}_{p2} - \mathcal{C}_{p2} \mathcal{C}_{\Pi}^{-1} \mathcal{C}_{p1})^{-1} (\theta_p^1 - \theta_p^2) \sim \chi^2 (\operatorname{rank}[\mathcal{C}_{p1} + \mathcal{C}_{p2} - \mathcal{C}_{p1} \mathcal{C}_{\Pi}^{-1} \mathcal{C}_{p2} - \mathcal{C}_{p2} \mathcal{C}_{\Pi}^{-1} \mathcal{C}_{p1}]).$$

Significantly more complicated...

The complication arises from the removal of the prior. A prior constrained parameter combination cannot contribute to tensions...

I am still searching for a numerically reliable way of computing this...

(see R&H 1806.04649 for the proof)

Gaussian estimators: parameter differences ND

ND parameter shifts (in update form)

$$Q_{\text{UDM}} \equiv (\theta_p^1 - \theta_p^{12})^T (\mathcal{C}_{p1} - \mathcal{C}_{p12})^{-1} (\theta_p^1 - \theta_p^{12})$$

$$\sim \chi^2 (\text{rank}[\mathcal{C}_{p1} - \mathcal{C}_{p12}]).$$

Same as standard parameter shifts, kind of magic...

Weights directions that dataset 2 improves over 1, in this way can be computed reliably

Offers mitigation of non-Gaussianities (1 can be the most Gaussian of the two datasets)

(see R&H 1806.04649 for the proof)

Gaussian estimators: compatibility with the prior

The update parameter shift estimator offers a nice additional internal consistency check

Sometimes we have Gaussian priors and the posterior is an update of the prior

ND prior compatibility

$$Q_{\text{UDM}} \equiv (\theta_{\Pi} - \theta_p)^T (\mathcal{C}_{\Pi} - \mathcal{C}_p)^{-1} (\theta_{\Pi} - \theta_p)$$

Non-gaussian estimators: parameter differences

Full dimensional distribution of differences in parameters

(Raveri & Hu arXiv:1806.04649, Raveri & Doux arXiv:2105.03324)

Non-gaussian estimators: parameter differences

(Raveri & Hu arXiv:1806.04649, Raveri & Doux arXiv:2105.03324)

Parameter differences: the bad news...

Parameter differences in practice

differences in practice

$$P_{araneter in but ion}$$

$$P(\Delta \theta) = \int P_1(\theta_1) P_2(\theta_1 - \Delta \theta) d\theta_1$$
Usually very high dimensional integral

Usually very high dimensional integral

First integral can be done from MCMC chains: difference of samples is a sample of parameter differences

(Raveri and Doux arXiv:2105.03324)

Parameter differences in practice $P_{robability} of non-sero$ $\Delta = \int_{P(\Delta\theta) > P(0)} P(\Delta\theta) d\Delta\theta$

Second integral can be done with KDE but is very expensive

Naive algorithm is N^2 (not doable) R&D arXiv:2105.03324 has the NlogN algorithm which is still very expensive (curse of dimensionality of KDEs)

(Raveri and Doux arXiv:2105.03324)

Parameter differences and machine learning

(Raveri and Doux arXiv:2105.03324)

Normalizing flows

$$y_1 = \mu_1 + \sigma_1 z_1$$

$$y_i = \mu(y_{1...i-1}) + \sigma(y_{1...i-1}) z_i$$

Stacked with permutations to ensure no coordinate is unlucky

(Papamakarios, Pavlakou, Murray arXiv:1705.07057)

Marco Raveri

Normalizing flows performances

...trained PDFs are indistinguishable from real (KDE) ones...

(Raveri and Doux arXiv:2105.03324)

Marco Raveri

Normalizing flows performances

(Raveri and Doux arXiv:2105.03324)

Marco Raveri

End to end consistency check pipeline

Computational tools

~ pip install tensiometer

With several examples

Growth tension(s)

Gravitational lensing

(video credit ESA)

Gravitational lensing

Both the CMB and galaxy shapes are distorted

Weak lensing surveys try to detect the lensing effect from large scale structures in front of other galaxies

Structure's probe 1: galaxies

First calibrator: power spectrum of galaxy clustering

Structure's probe 1: galaxies

Physical intuition is easy \rightarrow amplitude of the signal Model parameter dependency is complicated

(see arXiv:2112.05737 for best constrained parameters)

Marco Raveri

Second calibrator: power spectrum of CMB temperature fluctuations

(Planck 2018 cosmological parameters, arXiv:1807.06209)

Marco Raveri

The amplitude of the CMB signal is a composite of the primordial amplitude of fluctuations (A_s) and optical depth from us to recombination (τ) and is $\propto A_s \cdot e^{-2\tau}$

The CMB can self-calibrate in two ways: 1- CMB lensing 2- large scale polarization

1- lensing: smears the CMB acoustic peaks

2- large scale polarization: re-scattering of photons generates polarization anisotropies

(credit Wayne Hu tutorials)

Exercise with current data sets

DES linear vs CMB temperature $\Rightarrow P = 0.03 \ (2.1\sigma)$ if considering 1d then $\Rightarrow 2.6\sigma \Rightarrow$ **look elsewhere effect**

(based on work in DES)

Growth tension 1: CMB-galaxies

DES linear vs CMB temp + pol $\Rightarrow P = 0.001 (3.2\sigma)$ Update (temp vs temp + pol) in full agreement

(based on work in DES)

Exercise with current data sets

DES vs CMB temp+pol+large scale pol $\Rightarrow P = 0.006 (2.7\sigma)$

(based on work in DES)

Growth tension 2: CMB lensing

Update adding large scale polarization is in some tension $\Rightarrow P = 0.003 \ (3\sigma)$

(based on work in DES)

Growth tension 2: CMB lensing

Application to growth probes

Conclusions

Outlook

- * Concordance in cosmology: a puzzle with multiple pieces
- * Three main (calibration) tensions on the way to 1%:
 - Hubble constant
 - Growth of structures
 - Lensing of the CMB

* They all seem to involve hi vs low redshift...

Join the search for tensions

(whatever field you work in)

~ pip install tensiometer

Contributions are very welcome!

	tensiometer.readthedocs.io	
	Example calculation of agreement and disagreement between posterior distributions Marco Raveri (mraveri@sas.upenn.edu) This notebook shows an end to end calculation of the agreement and disagreement between two experiments with different methods, in an idealized case and in a realistic case involving two cosmological experiments.	
In [1]:	<pre># Initial setup: %matplotlib inline %config InlineBackend.figure_format = 'retina' %load_ext autoreload %autoreload 1 # import libraries: import sys, os</pre>	