「先端加速器LHCが切り拓くテラスケールの素粒子物理学」研究会 2013/5/23 名古屋

New Small Wheel Upgrade

片岡 洋介 (東大素粒子センター)

1

Contents

- 1. New Small Wheelについて
- 2. Micromegas R&Dの状況
- 3. 国内R&Dの進展と今後

現在、TDRのapproval process中

https://svn.cern.ch/reps/atlasgroups/Detectors/MuonSpectrometer/NSWTDR/NSWTDR.pdf

※ MM chamberの話にフォーカスし、 sTGC, elec, simulationはTDRに譲ります。

1. New Small Wheelについて

NSW Upgrade

現行Small Wheel

Small Wheel (現行機)

- MDT η=1.3~2.0
- CSC η=2.0~2.7

Hit rate at Luminosity = 10^33

Cavern background up to 100 Hz / cm2

Estimated hit rate

• Large drift time < us

Estimated L1 rate

NSW chambers

requirements

~7x10^34でperformanceを落とさず動く ~1m radの角度分解能

primary trigger

95%<25ns, σx ~150um, up to 20kHz/cm2

→ Initial design review (2012)を受けて、 sTGC (Trigger), Micromegas(tracking)採用

<u>primary tracking</u> σt 10~20ns, σx <100um, up to MHz?

Micromegas

NSW structure

2. Micromegas R&Dの状況

Micromegas R&D

- PCB workshop(CERN内でMM作れる)と組んで非常に効率的。
- 昨年は、試作機を逐次SPS beamlineに投入、6月から半年間データを取り続けた。

TB results

- Initial design review用試作機 T1~T8 (小型10cm, 最終仕様)
- 基本性能のチェック、磁場応答

2012秋 学会報告(川西)

https://indico.cern.ch/getFile.py/access?subContId=0&contribId=20&resId=0&materialId=slides&confId=191688

MM in ATLAS

もう一つのテスト 昨年、MMのtest chamberをATLAS内に設置 - 3 chambers at CSC ... R13, R16, R19 (10cm)

- 2 chambers at MBT ... MBT0_3, MBT0_4

- High rate環境でのテスト
- ・ 読み出しスキーム(SRS→ROS)のテスト
- Performance (MDT,CSCなどと比較)

※ ROS経由での読み出しは間に合わなかった

→ Standaloneで

outputs from MM in ATLAS

大型化、多層モジュール

最近の話題

- 2m x 1m 製造中
 - floating mesh 2m x 1m
 - PCB読み出し基板 1m x 0.5 x 4枚
- 1m x 0.5m 4層モジュール製造予定

越智さん Rui (PCB workshop)

3. 国内R&Dの進展と今後

Resistive strip層の形成手法

Initial design review後、 量産に適した製造手法の確立へ。

requirements

- fine strip 400um or less
- なめらかな構造 (電場構造)
- 均一な抵抗値 O(M) Ohm/cm
- ・ 量産速度 / コスト
- 耐久性

その他は既存の基板技術(ething)でOK readout strip, piller, mesh

resistive strip R&Dの進展

国内ー号機(プリント版)

Initial Design Review後、量産に適したスクリーンプリントをCERN/日本で並行して試作

昨年12月 小型MM(10cm, 1D)完成

400um pitch, 256ch, バルクMM

- 均一性はまずまず (400umが限界)
- 粘性、抵抗率の コントロールは難

エッチングと比してなめらか

Testbeam at CERN

神戸大 江戸くん

TB results

2013春 学会報告(片岡)

http://atlas.kek.jp/sub/documents/jps201303/kataoka_mm130327.pdf

新たに提案中の手法

スパッタ版一号機

利点を生かして 200um pitchに (ladder型: charge掃け)

6月第一週納品

6/17-23 中性子ビームテスト (放電・耐久性、中性子応答)

神戸大 海事科学部タンデム加速器 (Be+d→B+n)

SRS+MM テストベンチ(東大・神戸)

量産工程案

スパッタリングによる方法では、工程を分離可能、日本が量産工程に参入できる

今後の予定

- 6月頭 10cm小型機、200um pitch ladder
- 7~8月 floating mesh, alignment study
- 8~9月 大型化 1m x 0.5m → on CERN PCB 量産スキームの確立

まとめ

- NSW用chamberのR&D及びテスト進行中

 → technical design reviewにまとめられた
- 今後、大型化、多層モジュールの試作、
 ここ一年くらいで製造工程も含めて確立。
- ■内でも並行して、試作及びテスト。
 特にスパッタリングによるresistive stripの形成手法を提案
 → 量産工程の一部を担うことを目標に

backup

Figure 2.4: MDT tube hit (solid line) and track segment efficiency (dashed line) as a function of tube rate.

Fig. 1. Expected counting rates (Hz/cm²) for the ATLAS Muon detectors at LHC nominal luminosity (from Ref. [1]).

1: Ratio of measured to simulated MDT hit rate during a 7 TeV run at an aver luminosity of $1.9 \times 10^{33} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$ (50 ns bunch spacing).

0 (Lorentz Angle) [degrees]

E_{drift} [kV/cm]

Figure 4.1: The sTGC internal structure.

sTGC radiation test @ Nahal Soreq, Jan 2012 (prelim.)

Figure 4.9: Single layer efficiency for detecting minimum ionizing particles as function of the detected photon rate of a $120 \times 70 \,\mathrm{cm^2}$ chamber irradiated at the Sore Nuclear Center.