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• Muon is a very sensitive probe for BSM physics 
• The Muon Trio in Precision and Intensity Frontiers 

• g-2, EDM, charged lepton flavor violation (cLFV)

Probing BSM with muons
Apr 7, 2021

Unveil new physics
Probe energy scale 

otherwise unreachable 
E > 1000 TeV

Courtesy Yoshitaka Kuno



3

Very active research area!

Fermilab

Paul Scherrer Institut (PSI)
CSNSHIAF/CiADS

Muon g-2, Mu2e

muEDM, MEG II, Mu3e, 
MUSE, CREMA, etc

Muon g-2/EDM, COMET, 
DeeMe, Mu HFS/1S-2S, etc

Applications, MACE

J-PARC

Next generation muon g-2/EDM?

> 20 muon physics experiments!

TRIUMF
TWIST, Mu studies

RCNP, Osaka
Muon Applications
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The Muon Moments: g-2 and EDM

• A search for new physics which is 
essentially “background-free”

• The contribution from SM’s CKM matrix is 

too small (d ~ 10-42 e cm)

• Current limit d ~ 10-19 e cm


• Many BSM models predict large EDMs

• Complementary to LHC searches


• Baryon asymmetry in the universe (BAU) 
requires more CPV

• EDMs are good probes of BSM CPV

• g-2 can be calculated and measured to 
very high precision

• SM Theory: 370 ppb

• Fermilab experiment: 460 ppb


• Precision test of SM calculations

• Sensitive to 4-loop QED, QCD, and EW


• The difference between theoretical and 
experimental values probes BSM physics

• Complementary to LHC searches

⃗μ = g
e

2m
⃗s ⃗d = η

e
2m

⃗s
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• g-factor relates spin to magnetic moment
• Dirac’s prediction (1928): ge = 2  

• Magnetic anomaly discovered in the electron (Kusch and Foley, 1948)
• ge = 2.00238(6) by measuring atomic energy levels 

• Julian Schwinger calculated ge using quantum electrodynamics (QED)
• QED one-loop correction gives 

• Fractional deviation from Dirac’s prediction is called magnetic anomaly

History of g-2

e e

0.1% of g-factor
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Standard Model Prediction of aμ

QED EW HVP HLbL

Theory Initiative White Paper: T. Aoyama et al. Phys. Rept. 887 (2020)

(370 ppb)
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More on HVP contributions

2) Lattice QCD + 
supercomputers

Very important cross check! 
First run: 2022-2024

1) Dispersion relation + 
low energy e+e- -> hadrons

New results from 
CMD-3, BaBar, 

BES-III and Belle-II 
expected!

3) Dispersion relation + 
    muon scattering on electrons

Phys. Lett. B 746 (2015), 325

Theory initiative: estimate of ~2025 to sort all this out
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The “first” muon g-2 experiment 

• The result was g = 2.0 ± 0.1 for the muon

• Subsequent experiments indicated that g > 2 

Pion decay

Muon decay
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Evolution of the g-2 precision

full stats
Run 1 (2021)

Stopped Muons 
Stop muons in a magnetic field 
measurement of  directly
gμ

Storage Ring 
Dilated lifetime 
measurement of , more precise
aμ

FNAL goal: 4 x improvement
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Four generations of storage rings

CERN 
1960-1970s 

7.3 ppm 
(completed)

BNL 
1990-2000s 
0.54 ppm 

(completed)

Fermilab 
2009-2023 
0.14 ppm 

(in progress)

J-PARC 
2009-2030s 
0.45 ppm 

(under 
construction)
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Muon g-2 Collaboration
(>200 collaborators, 35 institutes, 7 countries)

Muon g-2 collaboration meeting at Elba, Summer 2019

• USA
– Boston
– Cornell
– Illinois 
– James Madison
– Kentucky 
– Massachusetts
– Michigan
– Michigan State
– Mississippi
– North Central
– Northern Illinois 
– Regis
– Virginia
– Washington

• USA National Labs
– Argonne
– Brookhaven
– Fermilab

• China
– Shanghai Jiao Tong

• Germany
– Dresden
– Mainz

• Italy
– Frascati 
– Molise
– Naples
– Pisa
– Roma Tor Vergata
– Trieste
– Udine

• Korea
– CAPP/IBS
– KAIST

Russia
Budker/Novosibirsk
JINR Dubna

United Kingdom
Lancaster/Cockcroft
Liverpool
Manchester
University College London
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We include: Particle-, Nuclear-, Atomic-, Optical-, Accelerator-, and Theoretical Physicists 
And we combine our effort to measure a single value, g-2, to 140 ppb (BNL - 540 ppb)!

Kim Siang Khaw

SJTU/TDLI
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Principle of g-2 measurement
CyclotronLarmor Thomas

measure 
difference in 

frequency 
precisely

homogenous 
field and 

precise field 
measurement

Anomalous precession frequency
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Precession frequency measurement

N(t) = N0e−t/τ [1 + Aμ cos(ωat + ϕ)]
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Magnetic field measurement

pNMR probes around the 
storage ring

! = ℏ$!
2&! !! = #!

$ℏ
4'!

0.3 ppt 22 ppb 3 ppb

We measure these two
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Calorimeters measure positron time and energy

 e+ 

Stacking crystalsOpened up calorimeter

SiPM PbF2 pileup separation

PMT-like signal, B-field operation, 100% separation > 2.5 ns

6
9

Decay positron curving in and 
striking a calorimeter
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Trackers extrapolate 𝒆+ to muon decay position

Vacuum	Chamber

Calorimeters Tracker

extrapolated	decay	vertices

Vacuum	Chamber

Calorimeters Tracker

extrapolated	decay	vertices

The SWISS KNIFE for g-2 experiment
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Trackers extrapolate 𝒆+ to muon decay position

Vacuum	Chamber

Calorimeters Tracker

extrapolated	decay	vertices

Vacuum	Chamber

Calorimeters Tracker

extrapolated	decay	vertices

17
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NMR probes measure magnetic fields

Large gradientsSmall gradients

(FID) Waveforms with ~10 ppb resolution

Shimming Trolley Probe Matrix

378 Fixed Probes above and below the vacuum chamber 
measure the field continuously throughout the experiment

A 25-element pNMR Trolley was used to map 
the field during rough shimming adjustments 
(see video) 


A 17-element pNMR Trolley maps the field IN 
VACUUM during running periods 



19

A grand view of the g-2 ring

 µ+ 

 µ+ 
 e+ 

 24 calorimeters + 2 trackers 

1. Inject muon beam 
into the storage ring 
and store them


2. Monitor the magnetic 
field with fixed and 
trolley probes


3. Detect positrons with 
calorimeters and 
trackers
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Additional corrections
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Visualizing the measurements

!!"
!# ", $, % ×'(", $, %)
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Systematics in ωa ?

project onto X-axis

fit with

N(t) = N0e−t/τ [1 + Aμ cos(ωt + ϕ)]

Is that all? NO!
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Systematics in ωa ?

project onto X-axis
If the phase is time dependent (“early-to-late” effect)

Frequency is shifted!

= (ω + ϕ′ )t + ϕ0

ωt + ϕ = ωt + ϕ(t)

= ωt + ϕ0 + ϕ′ t

N(t) = N0e−t/τ [1 + Aμ cos(ωt + ϕ)]
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• Detector Effect
• Positron pileup
• Gain instability

• Beam Dynamics
• Horizontal betatron motion
• Vertical betatron motion
• Beam de-bunching

• Spin Dynamics
• Spin-momentum correlation + muon losses

ωa Systematics
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• Detector Effect
• Positron pileup
• Gain instability

• Beam Dynamics
• Horizontal betatron motion
• Vertical betatron motion
• Beam de-bunching

• Spin Dynamics
• Spin-momentum correlation + muon losses

ωa Systematics
Artificially constructing pileup spectrum and removing it from the raw data



26

• Detector Effect
• Positron pileup
• Gain instability

• Beam Dynamics
• Horizontal betatron motion
• Vertical betatron motion
• Beam de-bunching

• Spin Dynamics
• Spin-momentum correlation + muon losses

ωa Systematics

Detector acceptance effect

the g-2 “wiggle plot”

N(t) = N0e−t/τ [1 + Aμ cos(ωat + ϕ)]

“wiggle plot” + beam motion

freq. dependent pull

}
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Run-1 result (Apr 2021)
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Four papers in the Physical Review Series

For more details, please refer to our papers (only 100+ pages!)
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Current status

Apr 2021 publication

~2023 publication
Run-6 has started this Fall 

(More stats + systematic runs)
}

}~2024/2025 publication
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J-PARC Muon g-2/EDM

μ+ (210 MeV)

μ+ (25 meV)

μ+ (4 MeV)

muon LINAC

muon
cooling

Storage magnet

injection

Surface
muon

J-PARC (MLF)

proton 
(3 GeV)

graphite

target

Goals:

  g-2        450 ppb (~ BNL/FNAL run 1)

  EDM   1.5 x 10-21 e・cm (x70 better)
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Muon g-2 and EDM
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No electrostatic quadrupole

Tracker-only measurementDetector misalignment

Systematics from axial E-field and

radial B-field can be neglected
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Fermilab vs J-PARC

J-PARC-E34
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Schedule and milestones
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Muon g-2 from muonium spectroscopy
Phys.Rev.Lett. 127 (2021) 25, 251801



Muonic Vector DMDetection Reach for ALP-Muon Wind

Detection Reach for Muon EDM Coupling

35

Muonphilic dark matter
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Rich physics program connected to muon g-2

ACME@US

MuMASS@PSI,  
J-PARC

J-PARC

CMD-3, BaBar, 
BES-III, Belle-II

CERN
Fermilab,  

J-PARC, PSI
NA64mu@CERN, 

M3@Fermilab

PIONEER@PSI, 
PIBETA/PEN@PSI

Very active 
field now!

MEG II, Mu2e, 
Mu3e, MuMuBar

Many interesting and high-impact experiments for young students and postdocs!
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Muon g-2 
Theory Initiative

Muon g-2 @ Fermilab

Muon g-2 @ J-PARC

MUonE @ CERN

STAY TUNED!

Muonium 1S-2S + HFS @ PSI/J-PARC

muEDM @ PSI


