

The Fermilab Muon g-2 experiment

2022.12.15

The 4th KMI School

Statistical Data Analysis and Anomalies in Particle Physics and Astrophysics Nagoya University, KMI Science Symposia December 15-17, 2022

atistical Data Analysi

Kim Siang Khaw The 4th KMI School, KMI, Nagoya University

李政道研究所 TSUNG-DAO LEE INSTITUTE

Homepage: http://web.tdli.sjtu.edu.cn/kimsiang84/ Email: kimsiang84@sjtu.edu.cn A recent review on muon g-2: Nucl. Phys. B 975 (2022) 115675

Probing BSM with muons

- Muon is a very sensitive probe for BSM physics
- The Muon Trio in Precision and Intensity Frontiers
 - g-2, EDM, charged lepton flavor violation (cLFV)

Unveil new physics

Apr 7, 2021

Courtesy Yoshitaka Kuno

Virtual BSM particles

 ψ_2

Probe energy scale otherwise unreachable *E* > 1000 *TeV*

Very active research area!

TRIUMF TWIST, Mu studies

Fermilab Muon g-2, Mu2e

Paul Scherrer Institut (PSI) muEDM, MEG II, Mu3e, **MUSE, CREMA, etc**

J-PARC Muon g-2/EDM, COMET, DeeMe, Mu HFS/1S-2S, etc

RCNP, Osaka **Muon Applications**

CSNS Applications, MACE

The Muon Moments: g-2 and EDM

- g-2 can be calculated and measured to very high precision
 - SM Theory: 370 ppb
 - Fermilab experiment: 460 ppb
- Precision test of SM calculations
 - Sensitive to 4-loop QED, QCD, and EW
- The difference between theoretical and experimental values probes BSM physics
 - Complementary to LHC searches

- A search for new physics which is essentially "background-free"
 - The contribution from SM's CKM matrix is too small (d ~ 10⁻⁴² e cm)
 - Current limit d ~ 10⁻¹⁹ e cm
- Many BSM models predict large EDMs
 - Complementary to LHC searches
- Baryon asymmetry in the universe (BAU) requires more CPV
 - EDMs are good probes of BSM CPV

History of g-2

- g-factor relates spin to magnetic moment
 - Dirac's prediction (1928): $g_e = 2$
- Magnetic anomaly discovered in the electron (Kusch and Foley, 1948) • $g_e = 2.00238(6)$ by measuring atomic energy levels
- Julian Schwinger calculated g_e using quantum electrodynamics (QED)
 - QED one-loop correction gives $g_e \approx 2(1+\frac{\alpha}{2\pi}) \approx 2.00232$
- Fractional deviation from Dirac's prediction is called magnetic anomaly

0.1% of g-factor

$$a = \frac{g-2}{2}$$

Standard Model Prediction of a_{μ}

Theory Initiative White Paper: T. Aoyama et al. Phys. Rept. 887 (2020)

$$+ a_{\mu}^{\mathrm{HVP, \ NNLO}} + a_{\mu}^{\mathrm{HLbL}} + a_{\mu}^{\mathrm{HLbL, \ NLO}}$$

More on HVP contributions

Theory initiative: estimate of ~2025 to sort all this out

The "first" muon g-2 experiment

RICHARD L. GARWIN, † LEON M. LEDERMAN, AND MARCEL WEINRICH Physics Department, Nevis Cyclotron Laboratories, Columbia University, Irvington-on-Hudson,

New York, New York (Received January 15, 1957)

EE and Yang¹⁻³ have proposed that the long held ▶ space-time principles of invariance under charge conjugation, time reversal, and space reflection (parity) are violated by the "weak" interactions responsible for decay of nuclei, mesons, and strange particles. Their hypothesis, born out of the $\tau - \theta$ puzzle,⁴ was accompanied by the suggestion that confirmation should be sought (among other places) in the study of the successive reactions

$$\pi^+ \rightarrow \mu^+ + \nu,$$
 (1)

$$\mu^+ \rightarrow e^+ + 2\nu.$$
 (2)

• The result was $g = 2.0 \pm 0.1$ for the muon • Subsequent experiments indicated that g > 2

Evolution of the g-2 precision

FNAL goal: 4 x improvement

Storage Ring Dilated lifetime measurement of a_{μ} , more precise

Stopped Muons

Stop muons in a magnetic field measurement of g_{μ} directly

Four generations of storage rings

CERN 1960-1970s **7.3 ppm** (completed)

Fermilab 2009-2023 0.14 ppm (in progress)

BNL 1990-2000s 0.54 ppm (completed)

J-PARC 2009-2030s 0.45 ppm (under construction)

Muon g-2 Collaboration (>200 collaborators, 35 institutes, 7 countries)

We include: Particle-, Nuclear-, Atomic-, Optical-, Accelerator-, and Theoretical Physicists And we combine our effort to measure a single value, g-2, to 140 ppb (BNL - 540 ppb)!

Muon g-2 collaboration meeting at Elba, Summer 2019

- Boston
- Cornell
- Illinois
- **James Madison**
- Kentucky
- Massachusetts
- Michigan
- Michigan State
- Mississippi
- North Central
- Northern Illinois
- Regis
- Virginia
- Washington

USA National Labs

- Argonne
- Brookhaven
- Fermilab

11/1

Shanghai Jiao Tong

- Dresden
- Mainz

- Frascati
- Molise
- Naples
- Pisa _
- Roma Tor Vergata
- Trieste
- Udine

Korea

- CAPP/IBS
- KAIST

TT

United Kingdom Lancaster/Cockcroft Liverpool Manchester

Kim Siang Khaw SJTU/TDLI

μ

precisely

m

measurement

Precession frequency measurement

Magnetic field measurement

14

Calorimeters measure positron time and energy

SiPM

Decay positron curving in and striking a calorimeter

PbF₂

pileup separation

PMT-like signal, B-field operation, 100% separation > 2.5 ns

Opened up calorimeter

Stacking crystals

Trackers extrapolate e⁺ to muon decay position

The SWISS KNIFE for g-2 experiment

Trackers extrapolate e⁺ to muon decay position

Chamber

NMR probes measure magnetic fields

A 25-element **pNMR Trolley** was used to map the field during rough shimming adjustments

(see video)

A 17-element **pNMR Trolley** maps the field IN VACUUM during running periods

378 Fixed Probes above and below the vacuum chamber measure the field continuously throughout the experiment

(FID) Waveforms with ~10 ppb resolution

Shimming Trolley Probe Matrix

. .

18

A grand view of the g-2 ring

24 calorimeters + 2 trackers

- 1. Inject muon beam into the storage ring and store them
- 2. Monitor the magnetic field with fixed and trolley probes
- 3. Detect positrons with calorimeters and trackers

Additional corrections

 $= \frac{\omega_a}{\tilde{\omega}'_p(T_r)} \frac{\mu'_p(T_r)}{\mu_e(H)} \frac{\mu_e(H)}{\mu_e} \frac{m_\mu}{m_e} \frac{g_e}{2}$ 11 ppb 0 ppb 22 ppb 0.3 ppt **Corrections from** Measured g - 2 frequency the beam dynamics systematic effects $\frac{\omega_a}{\tilde{\omega}'_p(T_r)} = \frac{f_{\text{clock}} \, \omega_a^m \left(1 + C_e + C_p + C_{ml} + C_{pa}\right)}{f_{\text{calib}} \, \langle \omega_p(x, y, \phi) \times M(x, y, \phi) \rangle (1 + B_k + B_q)}$

Magnetic field weighted over the muon distribution and azimuthally averaged

Corrections from the transient magnetic field

Visualizing the measurements

21

Systematics in wa?

Is that all? NO!

Systematics in wa?

$$N(t) = N_0 e^{-t/\tau} \left[1 + A_\mu \cos(\omega t + \phi) \right]$$

If the phase is time dependent ("early-to-late" effect)

$$\omega t + \phi = \omega t + \phi(t)$$
$$= \omega t + \phi_0 + \phi' t$$
$$= (\omega + \phi')t + \phi_0$$

Frequency is shifted!

ω_a Systematics

Detector Effect

- Positron pileup
- Gain instability

Beam Dynamics

- Horizontal betatron motion
- Vertical betatron motion
- Beam de-bunching

Spin Dynamics

Spin-momentum correlation + muon losses

 $A_1 \cos(\omega t + \phi_1) + A_2 \cos(\omega t + \phi_2) = A_3 \cos(\omega t + \phi_3)$

ω_a Systematics

Detector Effect

- Positron pileup
- Gain instability

Beam Dynamics

- Horizontal betatron motion
- Vertical betatron motion
- Beam de-bunching

Spin Dynamics

Spin-momentum correlation + muon losses

Artificially constructing pileup spectrum and removing it from the raw data

ω_a Systematics

Detector Effect

- Positron pileup
- Gain instability
- Beam Dynamics
 - Horizontal betatron motion
 - Vertical betatron motion
 - Beam de-bunching

Spin Dynamics

Spin-momentum correlation + muon losses

$$\begin{bmatrix}
 140 \\
 120 \\
 100 \\
 80 \\
 60 \\
 40 \\
 20 \\
 0 \\
 5 \\
 10
 \end{bmatrix}$$

$$the constant of the cons$$

$$C(t) = 1 - e^{-t/\tau_{\rm cb}}$$

Run-1 result (Apr 2021)

	Correction (ppb)	Uncertainty (ppb)
ul)	_	434
ic)	_	56
	489	53
	180	13
	-11	5
	-158	75
$(\phi, \phi) \times M(x, y, \phi)$	-	56
	-17	92
	-27	37
	_	10
	_	22
	_	0
	_	462

A Particle's Tiny Wobble Could Upend the Known Laws of Physics

By DENNIS OVERBYE

Evidence is mounting that a tiny subatomic particle seems to be disobeying the known laws of physics, scientists announced on Wednesday, a finding that would open a vast and tantalizing hole in our understanding of the uni-

verse. The result, physicists say, sug-gests that there are forms of matter and energy vital to the nature and evolution of the cosmos that are not yet known to science. "This is our Mars rover landing

moment," said Chris Polly, a physicist at the Fermi National Accelerator Laboratory, or Fermi-lab, in Batavia, IIL, who has been working toward this finding for most of his career.

The particle under scrutiny is ie muon, which is akin to an elec tron but far heavier, and is an inte-gral element of the cosmos. Dr. Polly and his colleagues - an in-ternational team of 200 physicists from seven countries - found that muons did not behave as pre-

that enumerates the fundamental cisit at the University of Kentucky. At a virtual seminar and news Continued on Page A18

muons did not behave as pre-dictod when shot through an in-tense magnetic field at Fermilab. The aberrant behavior poses a firm challenge to the bedrock the-ory of physics known as the Stand-ard Model, a suite of equations

A DET MA REIBAR HARR

Four papers in the Physical Review Series

PHYSICAL REVIEW LETTERS 126, 141801 (2021)

Editors' Suggestion Featured in Physics

Measurement of the Positive Muon Anomalous Magnetic Moment to

B. Abi,44 T. Albahri,39 S. Al-Kilani,30 D. Allspach,7 L. P. Alonzi,45 A. Anastasi,11,a A. Ariserkov,4,b S. Baeßler,^{17,e} I. Bailey,^{19,4} V. A. Baranov,¹⁷ E. Barlas-Yucel,³⁷ T. Barrett,⁴ E. Barzi,⁷ A. Bast A. Behrke,²² M. Berz,²⁰ M. Bhattacharya,⁴⁰ H.P. Binney,⁴⁸ R. Bjorkquist,⁶ P. Bloom,²¹ J. Bo T. Bowcock,⁷⁹ D. Boyden,²² G. Cantatore,¹³³⁴ R. M. Carey,² J. Carroll,⁷⁹ B.C. K. Casey,⁷ D. Ca R. Chakraborty, 38 S. P. Chang, 18.5 A. Chapelair, 6 S. Chappa, 7 S. Charity, 7 R. Chislett, 36 J. Choi, 5 Z. M. E. Convery,7 A. Conway,41 G. Corradi,9 S. Corrødi,1 L. Cotrozzi,11,12 J. D. Crnkovic,33 P.M. De Lurgio,¹ P.T. Debevec,³⁷ S. Di Falco,¹¹ P. Di Meo,¹⁰ G. Di Sciascio,¹² R. Di Stefan A. Driutti,^{35,1338} V. N. Duginov,¹⁷ M. Eads,²² N. Eggert,⁶ A. Epps,²² J. Esquivel,⁷ M. Farooq,⁴² R. Fa M. Fertl,^{48,16} A. Fiedler,²² A T. Fienberg,⁴⁸ A. Fioretti,^{11,14} D. Flay,⁴¹ S. B. Foster,² H. Fried N.S. Froemming, 6,22 J. Fry, 47 C. Fu, 20,4 C. Gabbanini, 11,18 M.D. Galati, 11,32 S. Gangaly, 21,7 A. G J. George,⁴¹ L. K. Gitbors,⁶ A. Giolosa,^{20,11} K. L. Giovanetti,¹⁵ P. Girotti,^{11,22} W. Gohn,³⁸ T. Gor S. Grant,³⁶ F. Gray,²⁴ S. Haciomeroglu,⁵ D. Haha,⁷ T. Halewood-Leagas,³⁹ D. Hampai,⁵ F. J. Henpstead,⁴⁸ S. Henry,⁴⁴ A. T. Herrod,^{37,d} D. W. Hentzog⁰,⁴⁴ G. Hesketh,³⁶ A. Hibbert,³⁵ Z. Hod K. W. Hong,⁴⁷ R. Hong,^{1,38} M. Iacovacci,^{10,31} M. Incagli,¹¹ C. Johnstone,⁷ J. A. Johnstone M. Kargiantoulakis,7 M. Karuza,13,45 J. Kaspar,48 D. Kawall,41 L. Kelton,38 A. Keshavarzi K. S. Khaw, 27,56,48,¢ Z. Khechadoonian,⁶ N. V. Khomutov,¹⁷ B. Kibarg,⁷ M. Kiburg,^{7,21} O. Kim,^{18,5} B. King,^{29,a} N. Kinnaird,² M. Korostelev,^{19,d} I. Kourbanis,⁷ E. Kraegeloh,⁴² V. A. Krylov,¹ N. A. Kuchinskiy,¹⁷ K. R. Labe,⁶ J. LaBounty,⁴⁸ M. Lancaster,⁴⁰ M. J. Lee,⁵ S. Lee,⁵ S. Leo,³⁷ B. Li I. Logashenko, 4.0 A. Lorente Campos, 58 A. Lucà, ' G. Lukicov, 50 G. Luo, 22 A. Lusiani, 1125 A. L R. Madrak,7 K. Makino,20 F. Marignetti,1030 S. Mastrolanni, M S. Masfield,39 M. McEvoy A. A. Mikhailichenke,^{6,a} J. P. Miller,² S. Miozzi,¹² J.P. Morgan,⁷ W. M. Morse,³ J. Mot,^{2,7} E. D. Newton, 39,44 H. Nguyen, 7 M. Oberling, 1 R. Osofsky, 48 J.-F. Ostiguy, 7 S. Fark, 5 G. Pauletta, 35 R.N. Pilato,¹¹³² K.T. Pitts,³⁷ B. Flaster,³⁸ D. Počenić,⁴⁷ N. Pohlman,²² C.C. Polly,⁷ M. Popovic,⁷ N. Raha.11 S. Ramachandran,1 E. Ramberg,7 N. T. Rider,6 J. L. Ritchie,46 B. L. Roberts,2 D. L. D. Sathyan,2 H. Scheilman,23h C. Schlesier,31 A. Schreekenberger,46,37 Y. K. Semerizidis,5 D. Shemyakin,^{4,b} M. Shenk,²² D. Sim,³⁹ M. W. Smith,^{48,11} A. Smith,³⁹ A. K. Soha,⁷ M. Sorbara J. Stapleton,7 D. Still,7 C. Stoughton,7 D. Stratakis,7 C. Strohman,6 T. Stuttard,86 H.E. Swanso D. A. Sweigart,⁶ M. J. Syphers,^{22,7} D. A. Tarazona,¹⁰ T. Teubner,³⁹ A. E. Tewsley-Booth,⁴² K. Thor N.H. Tran,² W. Tarner,³⁰ E. Valetov,^{30,19,27,4} D. Vasilkova,³⁶ G. Venanzoni,¹¹ V. P. Velnykh,¹⁵ T. A. Weisskopf,²⁰ L. Welty-Rieger,⁷ M. Whitley,³⁹ P. Winter,¹ A. Wolski,^{39,4} M. Wormald,³⁹ W. Wu

(Muon g = 2 Collaboration)

Argonne National Laboratory, Lemont, Illinois, USA ²Boston University, Beston, Massachusetts, USA Brookhaven National Laboratory, Upton, New York, USA Budger Institute of Nuclear Physics, Novosibirsk, Russic 5 Center for Axion and Precision Physics (CAPP) Institute for Basic Science (IBS), Daejeon, Rep *Cornell University, Ithaca, New York, USA Fermi National Accelerator Laboratory, Batavia, Illinois, USA ⁸INFN Grappe Collegato di Udine, Sezione di Trieste, Udine, Italy ³INFN, Laboratori Nazionali di Frascati, Frascati, Italy ¹⁰INFN, Sezione di Napoli, Napoli, Italy ¹INFN, Sezione di Pisa, Pisa, Italy 12 INFN, Sezione di Roma Tor Vergata, Roma, Italy ¹⁰INFN, Sezione di Trieste, Trieste, Italy 14 Istituto Nazionale di Ottica-Consiglio Nazionale delle Ricerche, Pise, Italy 15 Department of Physics and Astronomy, James Modison University, Harrisonburg, Virgin ¹⁶Institute of Physics and Cluster of Escellence PRISMA+, Johannes Gutenberg University Mainz, Joint Institute for Nuclear Research, Dubna, Russia

0031-9007/21/126(14)/141801(11)

141801-1 Published by the Amer PHYSICAL REVIEW A 103, 042208 (2021)

Featured in Physics

Magnetic-field measurement and analysis for the Muon g - 2 Experim

T. Albahri,³⁹ A. Anastasi,^{11,*} K. Badgley,⁷ S. Baetßer,^{47,1} I. Bailey,^{19,4} V. A. Baranov,⁴⁷ E. J. E. Bedeschi,^{II} M. Berz,²¹ M. Bhattacharya,⁴³ H. P. Binney,⁴⁸ P. Bloom,²¹ J. Bono,⁷ E. Bot G. Cantatore,^{13,34} R. M. Carey,² B. C. K. Casey,⁷ D. Cauz,^{35,1} R. Chakraborty,³⁸ S. P. Chang,⁸ R. Chislett,³⁶ J. Choi,⁵ Z. Chu,^{26,5} T. E. Chupp,⁴¹ A. Corway,⁴¹ S. Corrodi,¹ L. Cotrozzi S. Dabagov.^{9,1} P. T. Debevec,³⁷ S. Di Falco,¹¹ P. Di Meo,¹⁰ G. Di Sciascio,¹² R. Di Stefan V. N. Duginov, ¹⁷ M. Eads,²² J. Esquivel,⁷ M. Farooq,⁴² R. Faterni,³⁸ C. Ferrari,^{11,14} M. Fert A. Fioretti, ^{11,14} D. Flay,⁴¹ N. S. Froemming,^{48,22} C. Gabbanini, ^{11,14} M. D. Galati, ^{11,22} S. Ganguly. L. K. Gibbons,⁶ A. Giøiosa,^{29,11} K. L. Giovanetti,¹¹ P. Girotti,^{11,32} W. Gohn,³⁸ T. Gorringe, F. Gray,²⁴ S. Haciomeroglu,⁵ T. Halewood-Leagas,³⁹ D. Hampai,⁹ F. Han,³¹ J. Hempstead,⁴⁶ A. G. Hesketh,³⁶ A. Hibbert,³⁹ Z. Hodge,⁴⁸ J. L. Holzbauer,⁴³ K. W. Hong,⁴⁷ R. Hong,^{1,38} M. Ia P. Kammel,⁴⁸ M. Kargiantoulakis,⁷ M. Karuza,^{13,45} J. Kaspar,⁴⁸ D. Kawall,⁴¹ L. Kelton,⁵⁸ A. I K. S. Khaw, 77, 76, 18, 4 Z. Khechadoorian, 6 N. Y. Khomatov, 17 B. Kiburg, 7 M. Kiburg, 7.21 C. Kim N. Kinnaird,² E. Kraegeloh,⁴² N. A. Kuchinskiy,¹⁷ K. R. Lahe,⁶ J. LaBounty,⁴⁸ M. Lancaster,⁴⁰ N D. Li,^{26,1} L. Li,^{26,1} I. Logashenko,^{4,4} A. Lorente Campos,³⁸ A. Lucà,⁷ G. Lukicov,³⁶ A. Lu B. MacCoy,⁴⁰ R. Madrak,⁷ K. Makino,²⁰ F. Marigretti,^{10,30} S. Mastroianni,¹⁰ J. P. Miller,² S J. Mott, 27 A. Nath, 10,31 H. Nguyen, 7 R. Osofsky, 48 S. Park, 5 G. Pauletta, 25,8 G. M. Piacentin K. T. Pitts,³¹ B. Plaster,³⁸ D. Počanić,⁴⁷ N. Fohlman,²² C. C. Polly,⁷ J. Price,³⁹ B. Quinn,⁴³ N. E. Ramberg,7 J. L. Ritchie,45 B. L. Roberts,2 D. L. Rubin, 6 L. Santi,35,8 C. Schlesier.37 Y. K. Semertzidis, ⁵¹⁸ D. Shemyakin,^{4,4} M. W. Smith,^{48,11} M. Sorbara,^{12,33} D. Stöckinger,²⁸ D. Stratakis,7 T. Stuttard,36 H. E. Swanson,48 G. Sweetmere,40 D. A. Sweigart,6 M. J. Syphe T. Teubner,³⁵ A. E. Tewsley-Booth,⁴² K. Thomson,³⁹ V. Tishchenko,³ N. H. Tran,² W. Tum D. Vasilkova,³⁶ G. Venanzoni,¹¹ T. Walton,⁷ A. Weisskopf,³⁹ L. Welty-Rieger,⁷ P. Winter¹⁰,¹ (The Muon g - 2 Collaboration) ¹Argonne National Laboratory, Lemont, Illinois, USA ²Boston University, Boston, Massachusetts, USA ³Erookhaven National Laboratory, Upton, New York, USA 4 Budker Institute of Nuclear Physics, Novosibirsk, Russia ⁵Center for Axion and Precision Physics (CAPP) / Institute for Easic Science (IBS), Duejeo Cornell University, Ithaca, New York, USA Fermi National Accelerator Laboratory, Ratavic, Illinois, USA 8 INFN Grappo Collegato di Udine, Sezione di Trieste, Udine, Italy 9INFN, Laboratori Nazionali di Frascati, Frascati, Italy ¹⁰INFN, Sezione di Napoli, Napoli, Italy 11 INFN, Sezione di Pisa, Pisa, Italy 12 INFN, Sezione di Roma Tor Veryata, Roma, Italy ¹³INFN, Sezione di Trieste, Triesie, Italy 14 Istituto Nazionale di Ostica - Consiglio Nazionale delle Ricerche, Pisa, Ital ¹⁵Department of Physics and Astronomy, Janes Madison University, Harrisonburg, V. 16 Institute of Physics and Cluster of Excellence PRISMA+, Johannes Cutenberg University Mal ¹⁷Joint Institute for Nuclear Research, Dubna, Russia ¹⁸Department of Physics. Korea Advanced Institute of Science and Technology (KAIST). Daejo

[†]Also at Oak Ridge National Laboratory. [‡]Also at The Cockcroft Institute of Accelerator Science and Technology. ⁹Also at Shanghai Key Laberatory for Particle Physics and Cosmology; also at Key Lab for Particle Phys (MOE). Also at Lebedev Physical Institute and NRNU MEPhI ¹Also at Shenzhen Technolozy University #Also at Novosibirsk State University

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 Intern of this work must maintain attribution to the author(s) and the published article's title, journal citation, and

042208-1

2469-9926/2021/103(4)/042208(35)

Measurement of the anomalous precession frequency in the Fermilab Muon g - 2 Experiment

T. Albahri,³⁸ A. Anastasi,^{11,a} A. Anisenkov,^{4,b} K. Badgley,⁵ S. Baeßler,^{45,c} I. Bailey,^{19,4} V T. Barrett,⁶ A. Basti,^{11,31} F. Bedeschi,¹¹ M. Berz,²⁰ M. Bhattacharya,⁴² H. P. Binn E. Bottalico,^{11,31} T. Bowcock,⁵⁸ G. Cantalore,^{13,33} R. M. Carey,² B. C. K. Casey,⁷ I. S. P. Chang, 13,5 A. Chapelain, 6 S. Charity, 7 R. Chislett, 15 J. Choi, 5 Z. Chu, 256 T. E. Chup J. D. Crnkovic, 3,36,42 S. Dabagov, 9,7 P. T. Debevec, 36 S. Di Falco, 11 P. Di Meo, 18 G. D A. T. Fienberg,40 A. Fioretti,17,14 D. Flay,40 E. Frlež,43 N. S. Froemming, 6,22 J. Fry, 43 C. S. Ganguly,³⁵⁷ A. Garcia,⁴⁶ J. George,⁴⁰ L. K. Gibbons,⁶ A. Gioiosa,^{28,11} K. L. Giovan T. Gorringe,³⁷ J. Grange,^{1,41} S. Grant,³⁵ F. Gray,²³ S. Haciomeroglu,⁵ T. Halewood-Le J. Hempstead,⁴⁶ A. T. Herrod,^{38,4} D. W. Hertzog,⁴⁶ G. Hesketh,³⁵ A. Hibbert,³⁵ Z. Hodge,⁴⁵ R. Hong,¹³⁷ M. Iacovacci,¹⁰³⁰ M. Incagli⁽⁰⁾,¹¹ P. Kammel,⁴⁵ M. Kargiantoalakis,⁷ M. Kan L. Kelton,³⁷ A. Keshavarzi,³⁹ D. Kessler,⁴⁰ K. S. Khaw,^{2625,46,6} Z. Khechadoorian,⁶ ? M. Kiburg,^{7,2]} O. Kim,^{18,5} Y. I. Kim,⁵ B. King,^{31,8} N. Kinnaird,² E. Kraegeloh,⁴¹ A. Ku K. R. Labe,⁶ J. LaBounty,⁴⁶ M. Lancaster,³⁹ M. J. Lee,⁵ S. Lee,⁵ S. Leo,³⁶ B. Li,^{251,4} D. I. A. Lorence Campos,³⁷ A. Lucà,⁷ G. Lakicov,³⁵ A. Lusiani,^{11,24} A. L. Lyon,⁷ B. MacCo F. Marignetti,^{10,29} S. Mastroianni,¹⁰ J. P. Miller,² S. Miozzi,¹² W. M. Morse,³ J. Mott R. Osofsky,⁴⁶ S. Park,⁵ G. Pauletta,³⁴⁸ G. M. Piacentino,^{28,12} R. N. Pilato,¹¹³¹ D. Počanić,45 N. Pohlman,22 C. C. Polly,7 J. Price,38 B. Quinn,42 N. Raha,11 S. Ra J. L. Ritchie,⁴⁴ B. L. Roberts,² D. L. Rubin,⁶ L. Sarti,^{34,8} C. Schlesier,³⁶ A. Schreckenber D. Shemyakin,⁴ M. W. Smith,^{46,11} M. Sorbara,^{12,32} D. Stöckinger,²⁷ J. Stapleton,⁷ C. Stough H. E. Swanson,⁴⁶ G. Sweetmore,³⁹ D. A. Sweigart,⁶ M. J. Syphers,²²⁷ D. A. A.E. Tewsley-Booth,⁴¹ K. Thomson,³⁸ V. Tishchenko,³ N.H. Tran,⁷ W. Turner,³⁸ I G. Venanzoni,11 T. Walton,7 A. Weisskopf,20 L. Welty-Rieger,7 P. Winter,1 A.

(Muon g-2 Collaboration)

¹Argonne National Laboratory, Lemont, Illivois, USA Boston University, Boston, Massachusetts, USA ³Brookhaven National Laboratory, Upton, New York, USA ⁴Budker Institute of Nuclear Physics, Novesibirsk, Russia Center for Axion and Precision Physics (CAPP)/Institute for Basic Sc Daeieon, Republic of Korea *Cornell University, Ithace, New York, USA ³Fermi National Accelerator Laboratory, Batavia, Elinois, US ⁸INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, 9 INFN, Loboratori Nazionali di Frascati, Frascati, Italy ⁰INFN, Sezione di Napoli, Napoli, Italy ¹¹INFN, Sezione di Pisa, Pisa, Italy ¹²INFN, Sezione di Roma Tor Vergata, Roma, Italy ³!NFN, Sezione di Trieste, Trieste, Italy ¹⁴Istitute Nazionale di Ottica-Consiglie Nazionale delle Ricerche, ¹⁵Department of Physics and Astronomy, James Madison University, Harrisoni thinstitute of Physics and Cluster of Excellence PRISMA+, Johannes Gutenber Moinz, Germany 17 Joint Institute for Nuclear Research, Dubna, Russia ³Department of Physics, Korea Advanced Institute of Science and Technic Daejeon, Republic of Korea ¹⁹Lancaster University, Lancaster, United Kingdom ²⁵Michigan State University, East Lansiag, Michigan, USA ¹¹North Central College, Naperville, Illinois, USA Northern Illinois University, DeKaib, Illinois, USA 23 Regi: University, Denver, Colorado, USA

2470-0010/2021/103(7)/072002(29)

072002-1

Publis

PHYSICAL REVIEW ACCELERATORS AND BEAMS 24, 044002 (2021)

Beam dynamics corrections to the Run-1 measurement of the muon anomalous magnetic moment at Fermilab

T. Albahri, 38 A. Anastasi, 11,4 K. Badgley, 7 S. Baeßler, 45,5 I. Bailey, 19,6 V. A. Bararov, 17 E. Barlas-Yucel,³⁶ T. Barrett,⁶ F. Bedeschi,¹¹ M. Berz,²⁰ M. Bhattacharya,⁴² H.P. Binney,⁴⁶ P. Bloom,²¹ J. Bono,⁷ E. Bottalico,^{11,31} T. Bowcock,³⁸ G. Cantatore,^{13,33} R. M. Carey,² B. C. K. Casey,⁷ D. Cauz,^{34,8} R. Chakraborty,³⁷ S. P. Chang,^{18,5} A. Chapelain,⁶ S. Charity,⁷ R. Chislett,35 J. Choi,5 Z. Chu,25,d T. E. Chupp,41 S. Corredi,1 L. Cotrozzi,1 J. D. Crnkovic, ^{3,36,42} S. Dabagov, ^{9,6} P. T. Debevec, ⁵⁶ S. Di Falco,¹¹ P. Di Meo, ¹⁰ G. Di Sciascio,¹²
 R. Di Stefano, ^{10,29} A. Driutti, ^{34,1337} V. N. Duginov,¹⁷ M. Eads,²² J. Esquivel,⁷ M. Farooq,⁴¹
 R. Fatemi, ³⁷ C. Ferrari, ^{11,14} M. Fertl, ^{46,16} A. Fiedler,²² A. T. Fjenberg,⁴⁶ A. Fioretti, ^{11,14} D. Flay,⁴⁰ E. Frle⁴⁵ N. S. Froemming^{46,22} J. Fry⁴⁵ C. Gabbanini^{11,14} M. D. Galati^{11,31} S. Ganguly A. Garcia,46 J. George,40 L. K. Gibbons,6 A. Gioiosa,28,11 K. L. Giovanetti,15 P. Girotti,11,31 W. Gohn,³⁷ T. Gorringe,³⁷ J. Grange,^{1,41} S. Grant,³⁵ F. Gray,²³ S. Haciomeroglu,⁵ T. Halewood-Leagas,³⁸ D. Hampai,⁹ F. Han,³⁷ J. Hempsterd,⁴⁶ A. T. Herrod,^{34,c} D. W. Hertzog^{6,46} G. Hesketh,³⁵ A. Hibbert,³⁸ Z. Hodge,⁴⁶ J. L. Holzbauer,⁴² K. W. Hong, R. Hong,^{1,37} M. Iacovacci,^{10,30} M. Incagli,¹¹ P. Kammel,⁴⁶ M. Kargiantoulakis,⁷ M. Karuza,¹³ J. Kaspar,⁴⁶ D. Kawall,⁴⁰ L. Kelton,³⁷ A. Keshavarzi,³⁹ D. Kessler,⁴⁰ K. S. Khaw,^{26,25,46,4} Z. Khechadoorian,⁶ N. V. Khomutov,¹⁷ B. Kiburg,⁷ M. Kiburg,¹²¹ O. Kim,^{18,5} Y. I. Kim,² B. King, 38,a N. Kinnaird, 2 M. Korostelev, 19,4 E. Kraegeloh, 41 N. A. Kuchinskiy, 17 K. R. Labe, 6 J. LaBounty,46 M. Lancaster,39 M. J. Lee, 5 S. Lee, 5 B. Li,251,4 D. Li,257 L. Li,2 I. Logashenko, 4g A. Lorente Campos, 37 A. Luca,7 G. Lukicov, 35 A. Lusiani, 11,24 A. L. Lyon, B. MacCoy,46 R. Madrak,7 K. Makino,20 F. Marignetti,10,29 S. Mastroianni,10 J. P. Miller,2 S. Miozzi,¹² W. M. Morse,³ J. Mott,²⁷ A. Nath,^{10,30} D. Newton,^{38,a2} H. Nguyen,⁷ R. Osofsky,⁴⁶ S. Park,⁵ G. Pauletta,^{34,8} G. M. Piacentino,^{28,12} R. N. Pilato,^{11,31} K. T. Pitts,³⁶ B. Plaster,³⁷ D. Počanić,⁴⁵ N. Pohlman,²² C. C. Polly,⁷ J. Price,³⁸ B. Quinn,⁴² N. Raha,¹¹ S. Ramachandran,¹ E. Ramberg, J. L. Ritchie, 4 B. L. Roberts, 2 D. L. Rubin, L. Santi, 34 D. Sathyan, 2 C. Schlesier, ³⁶ A. Schreckenberger, ^{44,2,36} Y. K. Semertzidis, ^{5,18} M. W. Smith, ^{46,11} M. Sorbara, ^{12,32} D. Stöckinger,27 J. Stapleton,7 C. Stoughton,7 D. Stratakis,7 T. Stuttard,35 H.E. Swanson,46 G. Sweetmore,²⁹ D. A. Sweigart,⁶ M. J. Syphers,^{22,7} D. A. Tarazona,²⁰ T. Teubner,³ A.E. Tewsley-Booth,41 K. Thomson,38 V. Tishchenko,3 N.H. Tran,2 W. Tumer, E. Valetov, 36,19,26,6 D. Vasilkova, 35 G. Venanzoni, 11 T. Walton, 7 A. Weisskopf, 50 L. Welty-Rieger,7 P. Winter,1 A. Wolski,38.c and W. Wu42 (Muon g = 2 Collaboration)

¹Argonne National Laboratory, Lemont, Illinois, USA ²Boston University, Boston, Massachusetts, USA ³Brookhaven National Laboratory, Upton, New York, USA Budker Institute of Nuclear Physics, Novosibirsk, Russia ⁵Center for Axion and Precision Physics (CAPP) / Institute for Basic Science (IBS), Daejeon, Republic of Korea 6Cornell University, Ithaca, New York, USA ⁷Fermi National Accelerator Laboratory, Batavia, Illinois, USA ⁸INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy ⁹INFN, Laboratori Nazionali di Frascati, Frascati, Italy ¹⁰INFN, Sezione di Napoli, Napoli, Italy ¹¹INFN, Sezione di Pisa, Pisa, Italy 12INFN, Sezione di Roma Tor Vergata, Roma, Italy ¹³INFN, Sezione di Trieste, Trieste, Italy 14 Istituto Nazionale di Ottica - Consiglio Nazionale delle Ricerche, Pisa, Italy 15 Department of Physics and Astronomy, James Madison University, Harrisonburg, Virginia, USA ¹⁰Institute of Physics and Cluster of Excellence PRISMA+, Johannes Gutenberg University Main., Main: German

¹⁷Joint Institute for Nuclear Research, Dubna, Russia

044002-1

2469-9888/21/24(4)/044002(34)

Published by the American Physical Society

For more details, please refer to our papers (only 100+ pages!)

Current status

J-PARC Muon g-2/EDM

J-PARC (MLF) µ+ (210 MeV) injection Storage magnet

Muon g-2 and EDM

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} \right) \right]$$

p = 300 MeV/c muon No electrostatic quadrupole

radial B-field can be neglected

Tracker-only measurement

Ferm

nilab vs J-					f E IN
	BNL-	E821	Fermilab-E989	J-PARC-E34	
Muon momentum		3.09 Ge	eV/c	300 MeV/c	
Lorentz γ		29.3		3	
Polarization		100%	6	50%	
Storage field		B = 1.45 T		B = 3.0 T	
Focusing field		Electric quadrupole		Very weak magnetic	
Cyclotron period		149 r	ns	7.4 ns	
Spin precession period		4.37 µ	ιs	$2.11 \ \mu s$	
Number of detected e^+	5.0×	:10 ⁹	1.6×10^{11}	5.7×10^{11}	
Number of detected e^-	3.6×	:10 ⁹		_	
a_{μ} precision (stat.)	460	ppb	100 ppb	450 ppb	
(syst.)	280	ppb	100 ppb	<70 ppb	
EDM precision (stat.)	0.2×10^{-1}	$e^{-19} e \cdot cm$	_	$1.5 \times 10^{-21} e \cdot cm$	
(syst.)	0.9×10^{-1}	$e^{-19} e \cdot cm$		$0.36 \times 10^{-21} e \cdot cm$	

Schedule and milestones

	2021	2022	2023	2024	2025	20
KEK Budget						
Surface muon	*	Beam at H1 area		r Beam at H2 area		
Bldg. and facility		*	Final design		*	Com
Muon source	*	Ionization test @S	2	★ Ionization tes	t at H2	
LINAC		*	80keV acceleratio	on@S2 ★ 4.3 MeV@	H2 ★	fabrio
Injection and storage		* ele	Completion of ctron injection tes	t		
Storage magnet				★ B-field probe readγ	2	k Inst
Detector		★ Quoter va	ne prototype ★ N	Mass production re	eady	
DAQ and computing		★ grid serv ★ re:	vice open 🛛 ★ sr common computi source usage start	nall DAQ system ng operation test	Ready	
Analysis			*	Tracking software	ready Analysis software	read

Schemes of ionization

0

decay

from Mu

2500i

2000

1500

1000

80 keV acceleration of Mu⁻(µ⁺e⁻e⁻)

Demonstrated acceleration of Mu-Next: demonstration of acceleration of µ+

Region 1 10 < z < 20 (mm)[−]

10 12

O no laser-ablation

Time (µs)

- 4

Nuon g-2 from muonium spectroscopy

Ground-state HFS theory Rydberg constant fine-structure $R_{\infty} \equiv \alpha^2 m_e c / (2h)$ constant nonrelativistic Fermi energy from $H_{\rm HFS}$ $\nu_{\rm HFS} = \frac{16}{3} (1 + a_{\mu}) \frac{m_e}{m_{\mu}} \frac{R_{\infty} c \alpha^2}{(1 + m_e/m_{\mu})^3} [1 + \delta_{\rm HFS}]$ electron-muon $\mathcal{O}(\alpha)$ correction mass ratio Z-exchange [CODATA 2018 + refs therein] $-65\,\mathrm{Hz}$ $\delta_{ m HFS} = \delta_{ m Dirac} + \delta_{ m rad} + \delta_{ m rec} + \delta_{ m rad-rec} + \delta_{ m weak} + \delta_{ m had}$ hadronic vacuum pol. = 237.7(1.5) Hz radiative-recoil radiative relativistic known up to $\mathcal{O}[(m_e/m_n)lpha^3)$ Total TH uncertainty $\sim 70\,{ m Hz}\,(16{ m ppb})$ known up to $\mathcal{O}(Z\alpha^{2})$ recoil (exact) dominanted by (yet) uncalculated QED $\sim 10\,\mathrm{Hz}$ uncertainty known up to including a_a corrections at three-loop order $\mathcal{O}[(m_e/m_\mu)(Z\alpha)^3]$ antimuon charge [Eides-Shelyuto IJMPA 2016] Z = 1 $\sim 60\,{ m Hz}$ uncertainty

Phys.Rev.Lett. 127 (2021) 25, 251801

Muonphilic dark matter

²Theoretical Physics Department, Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA ³Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA ⁴Stanford Institute for Theoretical Physics, Stanford University, Stanford, California 94305, USA

Detection Reach for Muon EDM Coupling

Rich physics program connected to muon g-2

Many interesting and high-impact experiments for young students and postdocs!

ONE THING IS FOR SURE: THE HUNT IS ON, AND NEW DISCOVERIES ARE ON THE HORIZON.

Muonium 1S-2S + HFS @ PSI/J-PARC

Muon g-2 @ Fermilab

Muon g-2 **Theory Initiative**

STAY TUNED!

muEDM @ PSI

MUonE @ CERN

