ATLAS-TGC performance for cosmic ray / beam

2009.3.25 Yuta Takahashi

TGC special configuration for cosmic

- Basic detector parameter
 - HV : 2800V
 - Vth : 100mV
 - $CO_2(55\%) + n-C_5H_{12}(45\%)$
- 3 trigger type

Type 1	TGC1	TGC2	TGC3			
Wire (R)	-	3/4				
Strip (¢)	-	3/4				
ΔR	$\Delta R \leq 7$					

Туре 2,3	TGC1	TGC2	TGC3		
Wire (R)	2/3	3/4			
Strip (ø)	-	3/4			
ΔR	Type 2 : $10 < \Delta R \leq 15$ Type 3 : $\Delta R \leq 10$				

4 essential items to be checked

(1) Uniform occupancy with ~ 0 accidental trigger

(2) trigger only IP pointing μ with proper momentum tag

(3) Have ideal resolution (channel size / $\sqrt{12}$)

(4) Have ideal detection efficiency (~93%)

(1) occupancy

average occupancy = 2.1x10⁻⁵ (~1hit / 50,000 events)

- \rightarrow Still 0.02% channel have more than 5% occupancy \rightarrow Masked by electronics
- \rightarrow Uniform occupancy with ~0 level accidental coincidence ~ O(10⁻¹⁵)

(2) IP pointing functionality

(interval) Endcap system geometry

(3) Resolution (RMS of $\Delta \rho$ distribution)

(4) Detection efficiency : selection criteria

- 1) Select good tracks
 - 99% in χ^2 distribution
 - Good correlation with EI/EO
- 2) Remove tracks pointing to dead region
 - **370ch, 8%** at TGC1
- 3) Request L4&5&7 wire&strip hit
 - To raise purity. Because L4 ~ 7 are used by trigger (3/4)
- 4) Check L1,2,3 hit

Quick check using beam

With small events (8000 events),

Quick look followings 2 items:

(1) Hit profile

(2) trigger timing

(1) Hit profile

The smaller R (large η) would be, the more hits are observed

(2) Trigger timing

(2) Trigger timing

- Timing can also be checked by hit information
 - We are reading out 3BC (next, current, previous)
 for each trigger → Good indicator of timing

Performance for cosmic ray has been checked in situ

- (1) Uniform occupancy ~ 2×10^{-5} with ~0 accidental trigger
- (2) trigger only for IP pointing μ ($\Delta\theta < 15$ deg)
- (3) Ideal resolution ~ 15 mm
- (4) Detection efficiency ~ 86.4 ± 0.4 % (Vth, HV optimization is needed)

Quick check using first beam with small statistics

- (1) hit profile : smaller R has larger entries
- (2) Trigger timing is well adjusted within 25ns

We will go on commissioning activity towards 1^{st,} Oct (beam will come back again)

ADDITIONAL SLIDES

Calibration of miss-alignment

Blue : after calibration, Red : before calibration

Triplet residual distribution

Strip associated efficiency

Request L4 & 5 & 7 wire and strip hit and L2 wire (there are no strip channel) \rightarrow request L1/L3 wire hit and check strip associate hit within its chamber

efficiency using only TGC

efficiency is 80~90% around HV=2800V

 \rightarrow Including 5% inefficiency due to dead region, support structure

 \rightarrow TGC1 efficiency seems to be low, estimation way should be confirmed

Detection efficiency

Remove tracks pointing to dead/swap region (**370ch**, **8%**) of TGC1 ↓ Projection point of track at TGC1, L1,2,3

 \rightarrow will be fixed before next combined run (part of them is arleady fixed)

Trigger rate/hit distribution

Basically, cosmic ray has distribution :

$$J(\theta) = j_{\theta=0} j \cos^2 \theta + C \qquad J(\phi) = j_{\phi=0} j \cos^2 \phi + C$$

Suppose 20< θ <50 deg, $\Delta \phi$ < 2p/48 (inside 1 chamber) is accepted by trigger logic →Intensity of J(θ , ϕ) :

$$J = \int A\cos^2\theta \cos^2\phi d\Omega + C \qquad J = A(1 - \frac{1}{2}\cos 2\phi \cdot \Delta\phi) + C$$

Reasonable trigger rate / hit distribution for cosmic ray muons

Track purity

- Good track selection $\rightarrow 7k/180k$, 4% tracks remained
- Track purity
 - − ρ Residual ~18mm → decided by MDT $\sigma(\theta)$ ~ 10mmrad, TGC channel resolution ~ 40mm/√12 (smaller than TGC channel size)
 - Strip Δ ch (L7-L1 hit) at same trigger sector is limited well

Selected tracks are almost good track with associated TGC trigger with reasonable r/ϕ residuals

Efficiency criteria

	Selection	Aside			Cside		
	(Run# 91060, total #event ~ 180k)	L1	L2	L3	L1	L2	L3
1	Good track selection • probability>99% at χ^2 distribution • MDT hit ≥ 4 , TGC phi hit ≥ 1 • correlation with EO/EI and EM, $\Delta \varphi < \pi/16$, $\Delta \theta < 12$ mmrad	3714		3819			
2	Removing tracks pointing TGC dead region	3466	3553	3443	3803	3803	3696
3	L4 & 5 & 7 : wire & strip hit on the track	1559	1609	1606	1854	1854	1803
4	L4 & L7 wire satisfies coin ($\Delta R \le 4$)	1260	1306	1319	1536	1536	1488
5	Associated L1,2,3 wire hit	1062	1119	1145	1338	1348	1283

Detection efficiency

Combined result = $86.4 \pm 0.4\%$.

 \rightarrow After removing dead region, efficiency improved 2,3 %

 \rightarrow Little lower with ideal (93%), should be adjusted by Vth, HV

Operating HV

We decided to operate at 2800V

Detection efficiency : selection for L1,2,3 hit

- L1,2,3 hit was selected :
 - Only when residual (track closest TGC hit) < channel size is satisfied
 - Cut region is changed
 because channel size changes
 as the function of ρ

Trigger timing adjustment using beam

