∧ → pπ⁻過程を用いた陽子識別効率の導出方法の確立

名古屋大学 M1 平田 光

イントロダクション

- チャームバリオンの解析に向けて
 - ・・・チャームバリオンを含む全てのバリオンの終状態には必ず陽子 が含まれる
 - →バリオンを含む過程を解析するためには精密な陽子識別効率と その系統誤差を抑えることが必要

本研究のテーマ

- 系統誤差が1%未満となることを目指し、モンテカルロサンプル
 を用いて陽子識別効率の導出方法を確立する
- 実データ(Phase2とphase3)を用いて陽子識別効率とその系統 誤差を評価する

導出方法

• 陽子識別なしに全陽子数を見積もる

→<u>綺麗な陽子のサンプル</u>が必要

∧ → pπ 過程 「・ ∧の64%が陽子とπ 中間子に崩壊する

∧は比較的寿命が長い(ct: 7.8 [cm])
 →信号と背景事象の区別がしやすい

陽子の数 = ∧の数

- 陽子と識別された陽子数 = 陽子識別後に残ったへの数
 - → 陽子識別の要求として全検出器からのlikelihood ratioの情報 を用いる

解析手順

全ての荷電粒子のトラックから2本選び、陽子とπ中間子とみなし てpπ-不変質量を組む

∧が飛ぶ性質を用いて**∧選別**

陽子識別の要求あり・なしで不変質量分布をフィットし、∧の数を求 め陽子識別効率を計算

陽子の運動量とトラック方向(cosθ)それぞれ12個の領域に分け、 陽子識別効率の運動量とcosθ依存性を調べる

使用したMCサンプル

衝突エネルギー10.58GeV, phase3, ビームバックグラウンドなし BBbar : 公式のジェネリックMCサンプル (MC8) qqbar : release9を用いて自分で生成したジェネリックMCサンプル

A選別決定法

- 以下2つの変数を用いてへを選別
 - ∧の飛距離
 - 衝突点から∧の崩壊点を結ぶベクトルと∧の運動量ベクトル間の角度α
 - →7つの∧の運動量領域に分けて、 $\frac{S}{\sqrt{S+N}}$ が最大となるように 変数を最適化 (S:信号数, N:背景事象数)

∧選別で得られたサンプル

- ▶ 陽子識別の要求なしで∧のピークがはっきり見られる
- ➢ 陽子の運動量、cosθ (θ: ビーム軸からの角度)を広くカバーできる (ただし、陽子の運動量0.2 GeV/c 以下はカバーできない)

※この∧選別では他の長寿命の粒子(Ksなど)も残ってしまう

フィット法

∧の数(陽子の数)は不変質量分布をフィットすることで求める

→ MCTruthの情報を使って信号と背景事象の分布にあった関数を
 決める

真の値(MCTruth): 90.73 % (差 0.59 ± 0.19 %) →相対的に0.65%程度の誤差で求められる

17/11/24

B2JAM

▶Fitで得た結果がMCTruthより大きく見積もられやすい

B2JAM

ほとんどの領域で陽子識別効率はMCTruthと2%以内で一致 →本導出方法の妥当性が確認できた

FITC行に結果いMULITUTAの人でく見

B2JAM

MCTruthの問題

 ・ 背景事象のM_A付近にピークがある・・・特に陽子識別要求後にはっきり
 現れている

もしこのピークがAによるものならば、MCTruthの識別効率は本来より小さく見積もられてしまう

影響の目安 0.2 ≤ P < 1.0 [GeV/c]・・・ MCTruthでの識別効率は 約1%小さく見積もられる P ≥ 1.0 [GeV/c]・・・約0.5%小さく見積もられる

現在の背景事象に多く含まれているのは<u>Ksのイベント</u>

非線形背景事象の要因

まとめ

- Λ → pπ⁻ 過程を用いて陽子識別効率の手法を確立中
 - 全領域で0.5%程度の誤差で求められる
 - 運動量・cosθ領域に分けて、MCTruthと2%以内で一致
 - →解析の方向性としては間違っていないことを確認 系統誤差を1%未満にするため改善を目指す

今後

- MCTruthで見られたピークの原因をしらべ、対応を考える
- 非線形背景事象の原因であるKsを除去、または差っ引いて 識別効率を求める

BACK UP

Generic MC samples

- I checked the p $\pi^{\text{-}}$ invariant mass distribution with generic MC samples
 - Here, I use Y(4S) generic MC samples of phase III without beam background

There are a great deal more background than signal MC

Singal in continuum samples is very important to analysis Λ⁰

Check of the generic samples

 I generated generic MC samples (5fb⁻¹) by myself by using release-00-09-00 with the bug-fixed module.

 $p\pi^{-}$ invariant mass w/o any PID cut momentum w/o any PID cut

>They have the correct distribution as well as signal MC

FOM vs 飛距離の選別条件の位置

P_A < 0.5[GeV/c]; 飛距離の条件ではFOMは向上しない
 For P_A ≥ 0.5[GeV/c], プラトーになる

FOM vs cosaの選別条件の位置

 $P_{\Lambda} < 0.5[GeV/c]: cosa選別ではFOMは向上しない$ $<math>P_{\Lambda} \ge 0.5[GeV/c]: cosa > 0.9997のときFOMが最大$ したがって、以下のようにcosaの条件を決定した $\int For 0 < P_{\Lambda} < 0.5[GeV/c], cosa > -1 + 3.9994 P_{\Lambda}$

LFor P_∧ ≥ 0.5[GeV/c], **cosα > 0.9997**

∧選別前後の不変質量分布

▶ P_Λ < 0.5[GeV/c] S/Nが悪すぎる (S/N = 0.0127)
 ▶ P_Λ ≥ 0.5[GeV/c]の領域で信号効率は75.6%
 →P_Λ ≥ 0.5[GeV/c]の領域のみ使用する

Binning of momentum and $cos\theta$

- The samples covers proton momentum except for around 0-0.2GeV/c and $\cos\theta$ widely
 - \rightarrow Proton-ID efficiency is obtained in following binning

		Polar angle range			Momentum range [GeV/c]
Momentum vs $\cos\theta$ of true protons from $\Lambda \rightarrow p\pi^{-}$ process	1	-1.00.612	Backward	1	0.2-0.4
	2	-0.612 0.511	Barrel	2	0.4-0.6
0.8 0.6 0.4 0.2 0 0 0.2 0 0 0 0.2 0 0 0 0.2 0 0 0 0	3	-0.5110.300		3	0.6-0.8
	4	-0.3000.152		4	0.8-1.0
	5	-0.152 - 0.017		5	1.0-1.2
	6	0.017 - 0.209		6	1.2-1.4
	7	0.209 - 0.355		7	1.4-1.6
	8	0.355 - 0.435		8	1.6-1.8
	9	0.435 - 0.542		9	1.8-2.0
	10	0.542 - 0.692		10	2.0-2.5
	11	0.692 - 0.842		11	2.5-3.0
	12	0.842 - 1.000	Forward	12	> 3.0

Fit procedure for proton-ID efficiency

- To extract Λ^0 yield, I use fit
 - Signal and background shape is determined by fitting invariant mass distribution of all proton momentum and cosθ region

Signal : 2 Gaussian + 1 Crystalball function

Background : Linear function

→ Fixed ratio of 3 sigmas, ratio of heights, tail shape of Crystalball required 3 means are equivalent to be the same

For each bin, determined signal background shape by using MCTruth (remain one parameter of the Λ^0 numbers)

 \rightarrow Fit invariant mass w/ and w/o proton ID

 \rightarrow Obtain proton-ID efficiency

proton-ID eff. are bad for -1.0 < cosθ < -0.612(backward) and -0.612 < cosθ < -0.511 (TOP prism)

17/11/24

