
Extracting the most from
 collider data with deep learning

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.
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�2Outline for today

- (Optimally) using NNs for analysis 

- Improving search sensitivity 

- Enhancing SM measurements 

- Uncertainties with NNs 

- What are they? 

- How to improve  

         (or avoid)? 

- Anomaly detection
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In low-dimensions, can try to explicitly model p(x|params).
In high-dimensions, p is intractable.  Need likelihood-free!



�8Full phase space + likelihood free

New simulations
morph one simulation into another

Continuous variations
learn the dependence on parameters

Parameter estimation
use classification loss to fit parameters
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�9Full phase space reweighting

Answer: Yes! Full phase space  
reweighing with neural networks.

Imagine we have one high-statistics expensive simulation. 

Suppose there is another simulation of the pre-detector 
dynamics.  Can we use the pre-detector parts to 
achieve a detector version of the new simulation?

Facts: detector-level simulation is expensive; 
           pre-detector particle simulations (e.g. Pythia) are cheap.

(e.g. Geant4)

(Pythia + Geant4)



�10Likelihood free reweighting

Let x be a simulated event.  It could be 
composed of many hundreds of particles.

Suppose that p(x) and q(x) are the 
densities for the two simulations.

We can reweight the first simulation into the second 
by assigning per-event weights of q(x)/p(x). 
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8O,

hO(X)|wi
X⇠Pr ⌘

P
x

Pr(x)w(x)O(x) ⌘ P
x

Pr0(x)O(x) = hO(X)i
X⇠Pr0

i.e. any expectation value computed with weighted events (Pr, w) 
is the same as the expectation from a different probability (Pr’)

weighted hO(X)i
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�12Likelihood free reweighting

Let x be a simulated event.  It could be 
composed of many hundreds of particles.

Suppose that p(x) and q(x) are the 
densities for the two simulations.

We can reweight the first simulation into the second 
by assigning per-event weights of q(x)/p(x). 

…what if we don’t (and can’t easily) know q and p?



�13Likelihood free reweighting

Solution: train a neural network to 
distinguish the two simulations.  Call this f.

It is not hard to show that if f is optimal and you 
train with the most popular loss functions, then

f(x)
1�f(x) /

q(x)
p(x)

(for weighting, we don’t care about overall constants - 
in this case, it is the class imbalance during training)
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Solution: train a neural network to 
distinguish the two simulations.  Call this f.

It is not hard to show that if f is optimal and you 
train with the most popular loss functions, then

f(x)
1�f(x) /

q(x)
p(x)

(for weighting, we don’t care about overall constants - 
in this case, it is the class imbalance during training)

This is great because classification is easy 

while generation is hard.



�15Example: electron-positron collisions

Learn a classifier on the full observable phase 
space (momenta + particle flavor) and then 

check with some standard observables.

Our events have a variable number of particles & due to 
quantum mechanics, are permutation invariant.  Thus, we 
use a deep-sets variant called particle flow networks. 

PFNs: Komiske, Metodiev, Thaler, JHEP 01 (2019) 121
Deep sets: Zaheer et al., NIPS 2017 
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Learn a classifier on the full observable phase 
space (momenta + particle flavor) and then 

check with some standard observables.

Our events have a variable number of particles & due to 
quantum mechanics, are permutation invariant.  Thus, we 
use a deep-sets variant called particle flow networks. 

PFNs: Komiske, Metodiev, Thaler, JHEP 01 (2019) 121
Deep sets: Zaheer et al., NIPS 2017 

Just to stress: this gives you a 
new simulation with all the 4-

vectors that is statistically 
indistinguishable.



�17Example: electron-positron collisions
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space (momenta + particle flavor) and then 
check with some standard 1D observables.

(# of particles) (3-particle correlation function)
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�18Achieving precision
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What if we have a new simulation with 
multiple continuous parameters q?

*see Cranmer, Pavez, Louppe, 1506.02169

Easy - simply learn a 
parameterized classifier* !

…simply add the 
parameter as a feature 
to the network during 
training and let it learn 

to interpolate.

“fine structure constant” 
of the strong force



�20Parameter estimation

What if we want to reweight with pre-detector 
particles, but fit to detector-level objects? 

8

at truth level (before detector simulation) while the fit
happens in data (after the e↵ects of the detector), this
procedure will not work. It works only if the reweighting
and fitting both happen at detector-level or both happen
at truth-level. The following is an alternative method:

✓

⇤ = argmax
✓0

min
g

X

i2✓0

log(g(xi))

+
X

i2✓

w(xi, ✓) log(1 � g(xi)), (B3)

where w(xi, ✓) = f(xi, ✓)/(1�f(xi, ✓)) is a trained Dctr
using binary cross entropy as in the main body. The in-
tuition of the above equation is that the classifier g is
trying to distinguish the two samples and we try to find
a ✓ that makes g’s task maximally hard. If g cannot tell
apart the two samples, then the reweighting has worked.
This is similar to the minimax graining of a GAN, only
now the analog of the generator network is the reweight-
ing network which is fixed and thus the only trainable
parameters are the ✓

0. The advantage of this second ap-
proach is that it readily generalizes to the case where the
reweighting happens on a di↵erent level:

✓

⇤ = argmax
✓0

min
g

X

i2✓0

log g(xD,i)

+
X

i2✓

w(xT,i, ✓) log(1 � g(xD,i)), (B4)

where xT is the truth value and xD is the detector-level
value. In simulation (the second sum), these come in
pairs and so one can apply the reweighting on one level
and the classification on the other.

Asymptotically, both this method and the one in the
body of the DCTR paper learn the same result: ✓⇤ = ✓0.
To see this for the second method, consider the same logic
as in Appendix A. Conditioning on x and ✓, the optimal
g is given by

g =
E[Y |X = x]

(1 � E[Y |X = x])w(x, ✓) + E[Y |X = x]
, (B5)

which reduces to the result of the previous appendix
when w = 0. For fixed g, the loss is maximized when
g is independent of x, which happens if (1 � E[Y |X =
x])w(x, ✓) / E[Y |X = x]), which means that w(x, ✓)
is proportional to the likelihood ratio between the two
samples. An example implementation of this method in
Keras can be found at Ref. [72].

xD

xDxT

f(xT ,✓)
1�f(xT ,✓)

Intuition: reweight until you 
can’t distinguish the data from 
the (reweighted) simulation!

[data]

[reweighted 
simulation]



�21Parameter estimation

0.10 0.11 0.12 0.13 0.14 0.15
TimeShower:alphaSvalue

0.5

0.6

0.7

0.8

0.9

S
t
r
i
n
g
Z
:
a
L
u
n
d

Loss

Starting point

Gradient descent path

Target value

0.669

0.670

0.680

0.690
0.700
0.710

Fit 3 (2 shown) parameters using the full phase space!

*a different method was used for this fit - it is not a minimax procedure but doesn’t work at two levels … ask later for details 



�22Parameter estimationFitting in 3D with DCTR

Mean and standard deviation over 20 runs: 

1D:

Similar  
uncertainty

Similar 
spread

The meaning of this “uncertainty” is discussed later.



�23Unfolding

Theory of everything Nature

Detector-level

Particle-level

Detector-level

Particle-level

Parameter 

estimation Unfolding

Can we use this technique to take the full detector-level phase 
space and correct it to the full particle-level phase space?

…high-dimensional, unbinned unfolding!



�24Full phase space unfolding: OmniFold
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Emily Dickinson, #975

The Mountain sat upon the Plain
In his tremendous Chair –
His observation omnifold,
His inquest, everywhere –

The Seasons played around his knees
Like Children round a sire –
Grandfather of the Days is He
Of Dawn, the Ancestor –
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IBU proceeds iteratively according to the equation:

t

(n)

j =
X

i

Pr(truth is j | measure i) ⇥ Pr(measure i)

=
X

i

Rijt
(n�1)

j
P

k Rikt

(n�1)

k

⇥ mi, (2)

where n is the iteration number.
OmniFold uses machine learning to generalize Eq. (2)

to the unbinned, full phase space. A key concept for this
approach is the likelihood ratio:

L[(w, X), (w0

, X

0)](x) =
p

(w,X)

(x)

p

(w0,X0
)

(x)
, (3)

where p

(w,X)

is the probability density of x estimated
from empirical weights w and samples X. The function
L[(w, X), (w0

, X

0)](x) can be approximated using a clas-
sifier trained to distinguish (w, X) from (w0

, X

0). This
property has been successfully exploited using neural net-
works for full phase-space Monte Carlo reweighting and
parameter estimation [15, 20–23]. Here, we use neural
network classifiers to iteratively reweight the particle-
and detector-level Monte Carlo weights, resulting in an
unfolding procedure.

The OmniFold technique is illustrated in Fig. 1. In-
tuitively, synthetic detector-level events (“simulation”)
are reweighted to match experimental data (“data”), and
then the reweighted synthetic events, now evaluated at
particle-level (“generation”), are further reweighted to
estimate the true particle-level information (“truth”).
The starting point is a synthetic Monte Carlo dataset
composed of pairs (t, m), where each particle-level event
t is pushed through the detector simulation to obtain a
detector-level event m. Particle-level events have initial
weights ⌫

0

(t), and when t is pushed to m, these become
detector-level weights ⌫

push

0

(m) = ⌫

0

(t). OmniFold it-
erates the following steps:

1. !n(m) = ⌫

push

n�1

(m) L[(1, Data), (⌫push

n�1

, Sim.)](m),

2. ⌫n(t) = ⌫n�1

(t) L[(!pull

n , Gen.), (⌫n�1

, Gen.)](t).

The first step yields new detector-level weights !n(m),
which are pulled back to particle-level weights !

pull

n (t) =
!n(m) using the same synthetic pairs (t, m). Note that
⌫

push and !

pull are not, strictly speaking, functions be-
cause of the multi-valued nature of the detector simula-
tion. The second step ensures that ⌫n is a valid weighting
function of the particle-level quantities.

Assuming ⌫

0

(t) = 1, in the first iteration Step 1 learns
!

1

(m) = p

Data

(m)/p

Sim.

(m), which is pulled back to the
particle-level weights !

pull

1

(t). Step 2 simply converts

the per-instance weights !

pull

1

(t) to a valid particle-level
weighting function ⌫

1

(t). After one iteration, the new
induced truth is:

⌫

1

(t) p

Gen.

(t) =

Z
dm

0

p

Gen.|Sim.

(t|m0) p

Data

(m0). (4)
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FIG. 1. An illustration of OmniFold, applied to a set of syn-
thetic and natural data. As a first step, starting from prior
weights ⌫0, the detector-level synthetic data (“simulation”) is
reweighted to match the detector-level natural data (simply
“data”). These weights !1 are pulled back to induce weights
on the particle-level synthetic data (“generation”). As a sec-
ond step, the initial generation is reweighted to match the new
weighted generation. The resulting weights ⌫1 are pushed for-
ward to induce a new simulation, and the process is iterated.

This is a continuous version of IBU from Eq. (2), where
the sum has been promoted to a full phase-space integral.
After n iterations, the unfolded distribution is:

p

(n)

unfolded

(t) = ⌫n(t) p

Gen.

(t). (5)

The unfolded result can be presented either as a set of
generated events {t} with weights {⌫n(t)} (and uncer-
tainties) or, more compactly, as the learned weighting
function ⌫n and instructions for sampling from p

Gen.

.
To demonstrate the versatility and power of Omni-

Fold, we perform a proof-of-concept study relevant for
the LHC. Specifically, we unfold the full radiation pat-
tern (i.e. full phase space) of jets, which are collimated
sprays of particles arising from the fragmentation and
hadronization of high-energy quarks and gluons. Jets
are an ideal environment in which to benchmark unfold-
ing techniques, since detector e↵ects often account for
a significant portion of the experimental measurement
uncertainties for many jet substructure observables [24].
With the radiation pattern unfolded, one can obtain the
unfolded distribution of any observable using Eq. (5).
Hence, this procedure can be viewed as simultaneously
unfolding all observables.

Our study is based on proton-proton collisions gener-
ated at

p
s = 14 TeV with the default tune of Her-

wig 7.1.5 [25–27] and Tune 26 [28] of Pythia 8.243 [29–
31] in order to study a challenging setting where the “nat-
ural” and “synthetic” distributions are substantially dif-
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2

IBU proceeds iteratively according to the equation:

t

(n)

j =
X

i

Pr(truth is j | measure i) ⇥ Pr(measure i)

=
X

i

Rijt
(n�1)

j
P

k Rikt

(n�1)

k

⇥ mi, (2)

where n is the iteration number.
OmniFold uses machine learning to generalize Eq. (2)

to the unbinned, full phase space. A key concept for this
approach is the likelihood ratio:

L[(w, X), (w0

, X

0)](x) =
p

(w,X)

(x)

p

(w0,X0
)

(x)
, (3)

where p

(w,X)

is the probability density of x estimated
from empirical weights w and samples X. The function
L[(w, X), (w0

, X

0)](x) can be approximated using a clas-
sifier trained to distinguish (w, X) from (w0

, X

0). This
property has been successfully exploited using neural net-
works for full phase-space Monte Carlo reweighting and
parameter estimation [15, 20–23]. Here, we use neural
network classifiers to iteratively reweight the particle-
and detector-level Monte Carlo weights, resulting in an
unfolding procedure.

The OmniFold technique is illustrated in Fig. 1. In-
tuitively, synthetic detector-level events (“simulation”)
are reweighted to match experimental data (“data”), and
then the reweighted synthetic events, now evaluated at
particle-level (“generation”), are further reweighted to
estimate the true particle-level information (“truth”).
The starting point is a synthetic Monte Carlo dataset
composed of pairs (t, m), where each particle-level event
t is pushed through the detector simulation to obtain a
detector-level event m. Particle-level events have initial
weights ⌫

0

(t), and when t is pushed to m, these become
detector-level weights ⌫

push

0

(m) = ⌫

0

(t). OmniFold it-
erates the following steps:

1. !n(m) = ⌫

push

n�1

(m) L[(1, Data), (⌫push

n�1

, Sim.)](m),

2. ⌫n(t) = ⌫n�1

(t) L[(!pull

n , Gen.), (⌫n�1

, Gen.)](t).

The first step yields new detector-level weights !n(m),
which are pulled back to particle-level weights !

pull

n (t) =
!n(m) using the same synthetic pairs (t, m). Note that
⌫

push and !

pull are not, strictly speaking, functions be-
cause of the multi-valued nature of the detector simula-
tion. The second step ensures that ⌫n is a valid weighting
function of the particle-level quantities.

Assuming ⌫

0

(t) = 1, in the first iteration Step 1 learns
!

1

(m) = p

Data

(m)/p

Sim.

(m), which is pulled back to the
particle-level weights !

pull

1

(t). Step 2 simply converts

the per-instance weights !

pull

1

(t) to a valid particle-level
weighting function ⌫

1

(t). After one iteration, the new
induced truth is:

⌫

1

(t) p

Gen.

(t) =

Z
dm

0

p

Gen.|Sim.

(t|m0) p

Data

(m0). (4)
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FIG. 1. An illustration of OmniFold, applied to a set of syn-
thetic and natural data. As a first step, starting from prior
weights ⌫0, the detector-level synthetic data (“simulation”) is
reweighted to match the detector-level natural data (simply
“data”). These weights !1 are pulled back to induce weights
on the particle-level synthetic data (“generation”). As a sec-
ond step, the initial generation is reweighted to match the new
weighted generation. The resulting weights ⌫1 are pushed for-
ward to induce a new simulation, and the process is iterated.

This is a continuous version of IBU from Eq. (2), where
the sum has been promoted to a full phase-space integral.
After n iterations, the unfolded distribution is:

p

(n)

unfolded

(t) = ⌫n(t) p

Gen.

(t). (5)

The unfolded result can be presented either as a set of
generated events {t} with weights {⌫n(t)} (and uncer-
tainties) or, more compactly, as the learned weighting
function ⌫n and instructions for sampling from p

Gen.

.
To demonstrate the versatility and power of Omni-

Fold, we perform a proof-of-concept study relevant for
the LHC. Specifically, we unfold the full radiation pat-
tern (i.e. full phase space) of jets, which are collimated
sprays of particles arising from the fragmentation and
hadronization of high-energy quarks and gluons. Jets
are an ideal environment in which to benchmark unfold-
ing techniques, since detector e↵ects often account for
a significant portion of the experimental measurement
uncertainties for many jet substructure observables [24].
With the radiation pattern unfolded, one can obtain the
unfolded distribution of any observable using Eq. (5).
Hence, this procedure can be viewed as simultaneously
unfolding all observables.

Our study is based on proton-proton collisions gener-
ated at

p
s = 14 TeV with the default tune of Her-

wig 7.1.5 [25–27] and Tune 26 [28] of Pythia 8.243 [29–
31] in order to study a challenging setting where the “nat-
ural” and “synthetic” distributions are substantially dif-

Notation:

(accomplish with a classifier, as before)

Iterate:

⌫push0 (m) = ⌫0(t) !pull
n (t) = !n(m)

(these are not functions, since t → m is not 1:1)

m = measured, t = true



�27OmniFold

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
or

m
al

iz
ed

C
ro

ss
S
ec

ti
on

D/T: Herwig 7.1.5 default
S/G: Pythia 8.243 tune 26
Delphes 3.4.2 CMS Detector
Z+jet: pZ

T > 200 GeV, R = 0.4

“Data”

“Truth”

Sim.

Gen.

IBU ⌧ (�=1)
21

OmniFold

0.0 0.2 0.4 0.6 0.8 1.0 1.2

N -subjettiness Ratio ⌧ (�=1)
21

0.85

1.0

1.15

R
at

io
to

T
ru

th

IBU = iterative Bayesian; one of the most widely used methods
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FIG. 2. The unfolding results for six jet substructure observables, using Herwig 7.1.5 (“Data”/“Truth”) and Pythia 8.243
tune 26 (“Sim.”/“Gen.”), unfolded with OmniFold and compared to IBU. OmniFold matches or exceeds the unfolding
performance of IBU on all of these observables. We emphasize that OmniFold is a single general unfolding procedure, whereas
unfolding with IBU must be done observable by observable. Statistical uncertainties are shown only in the ratio panel.

ferent. As a proxy for detector e↵ects and a full detector
simulation, we use the Delphes 3.4.2 [32] fast simula-
tion of the CMS detector, which uses particle flow re-
construction. Jets with radius parameter R = 0.4 are
clustered using either all particle flow objects (detector-
level) or stable non-neutrino truth particles (particle-
level) with the anti-kT algorithm [33] implemented in
FastJet 3.3.2 [34, 35]. One of the simulations (Her-
wig) plays the role of “data”/“truth”, while the other
(Pythia) is used to derive the unfolding corrections. To
reduce acceptance e↵ects, the leading jets are studied
in events with a Z boson with transverse momentum
p

Z
T > 200 GeV. After applying the selections, we obtain

approximately 1.6 million events from each generator.

Any suitable machine learning architecture can be used
for OmniFold. For this study, we use Particle Flow
Networks (PFNs) [36, 37] to process jets in their natu-
ral representation as sets of particles. Intuitively, PFNs
learn and processes a set of additive observables via

PFN({pi}M
i=1

) = F

⇣PM
i=1

�(pi)
⌘

for an event with M

particles pi, where F and � are parameterized by fully-
connected networks. We specify the particles by their
transverse momentum pT , rapidity y, azimuthal angle

�, and particle identification code [38], restricted to the
experimentally-accessible information (PFN-Ex [36]) at
detector-level. To define separate models for Step 1 and
Step 2, we use the PFN architecture and training param-
eters of Ref. [36] with latent space dimension ` = 256,
implemented in the EnergyFlow Python package [39].
Neural networks are trained with Keras [40] and Tensor-
Flow [41] using the Adam [42] optimization algorithm.
The models are randomly initialized in the first iteration
and subsequently warm-started using the model from the
previous iteration. 20% of the events are reserved as a
validation set during training.

To investigate the unfolding performance, we consider
six widely-used jet substructure observables [43]. The
first four are jet mass m, constituent multiplicity M , the

N -subjettiness ratio ⌧

21

= ⌧

(�=1)

2

/⌧

(�=1)

1

[44, 45], and the

jet width w (implemented as ⌧

(�=1)

1

). Since jet groom-
ing [46–50] is of recent interest, we also show the jet mass
ln ⇢ = ln m

2

SD

/p

2

T and momentum fraction zg after Soft
Drop grooming [49, 50] with z

cut

= 0.1 and � = 0. Sev-
eral of these observables are computed with the help of
FastJet Contrib 1.042 [51].

The unfolding performance of OmniFold is shown in

One unfolding for OmniFold, 6 (one per) for IBU.
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FIG. 2. The unfolding results for six jet substructure observables, using Herwig 7.1.5 (“Data”/“Truth”) and Pythia 8.243
tune 26 (“Sim.”/“Gen.”), unfolded with OmniFold and compared to IBU. OmniFold matches or exceeds the unfolding
performance of IBU on all of these observables. We emphasize that OmniFold is a single general unfolding procedure, whereas
unfolding with IBU must be done observable by observable. Statistical uncertainties are shown only in the ratio panel.

ferent. As a proxy for detector e↵ects and a full detector
simulation, we use the Delphes 3.4.2 [32] fast simula-
tion of the CMS detector, which uses particle flow re-
construction. Jets with radius parameter R = 0.4 are
clustered using either all particle flow objects (detector-
level) or stable non-neutrino truth particles (particle-
level) with the anti-kT algorithm [33] implemented in
FastJet 3.3.2 [34, 35]. One of the simulations (Her-
wig) plays the role of “data”/“truth”, while the other
(Pythia) is used to derive the unfolding corrections. To
reduce acceptance e↵ects, the leading jets are studied
in events with a Z boson with transverse momentum
p

Z
T > 200 GeV. After applying the selections, we obtain

approximately 1.6 million events from each generator.

Any suitable machine learning architecture can be used
for OmniFold. For this study, we use Particle Flow
Networks (PFNs) [36, 37] to process jets in their natu-
ral representation as sets of particles. Intuitively, PFNs
learn and processes a set of additive observables via

PFN({pi}M
i=1

) = F

⇣PM
i=1

�(pi)
⌘

for an event with M

particles pi, where F and � are parameterized by fully-
connected networks. We specify the particles by their
transverse momentum pT , rapidity y, azimuthal angle

�, and particle identification code [38], restricted to the
experimentally-accessible information (PFN-Ex [36]) at
detector-level. To define separate models for Step 1 and
Step 2, we use the PFN architecture and training param-
eters of Ref. [36] with latent space dimension ` = 256,
implemented in the EnergyFlow Python package [39].
Neural networks are trained with Keras [40] and Tensor-
Flow [41] using the Adam [42] optimization algorithm.
The models are randomly initialized in the first iteration
and subsequently warm-started using the model from the
previous iteration. 20% of the events are reserved as a
validation set during training.

To investigate the unfolding performance, we consider
six widely-used jet substructure observables [43]. The
first four are jet mass m, constituent multiplicity M , the

N -subjettiness ratio ⌧

21

= ⌧

(�=1)

2

/⌧

(�=1)

1

[44, 45], and the

jet width w (implemented as ⌧

(�=1)

1

). Since jet groom-
ing [46–50] is of recent interest, we also show the jet mass
ln ⇢ = ln m

2

SD

/p

2

T and momentum fraction zg after Soft
Drop grooming [49, 50] with z

cut

= 0.1 and � = 0. Sev-
eral of these observables are computed with the help of
FastJet Contrib 1.042 [51].

The unfolding performance of OmniFold is shown in

One unfolding for OmniFold, 6 (one per) for IBU.

OmniFold is:
- Unbinned
- Full phase space (compute observables post-facto)
- Improves the resolution from auxiliary features
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FIG. 2. The unfolding results for six jet substructure observables, using Herwig 7.1.5 (“Data”/“Truth”) and Pythia 8.243
tune 26 (“Sim.”/“Gen.”), unfolded with OmniFold and compared to IBU. OmniFold matches or exceeds the unfolding
performance of IBU on all of these observables. We emphasize that OmniFold is a single general unfolding procedure, whereas
unfolding with IBU must be done observable by observable. Statistical uncertainties are shown only in the ratio panel.

ferent. As a proxy for detector e↵ects and a full detector
simulation, we use the Delphes 3.4.2 [32] fast simula-
tion of the CMS detector, which uses particle flow re-
construction. Jets with radius parameter R = 0.4 are
clustered using either all particle flow objects (detector-
level) or stable non-neutrino truth particles (particle-
level) with the anti-kT algorithm [33] implemented in
FastJet 3.3.2 [34, 35]. One of the simulations (Her-
wig) plays the role of “data”/“truth”, while the other
(Pythia) is used to derive the unfolding corrections. To
reduce acceptance e↵ects, the leading jets are studied
in events with a Z boson with transverse momentum
p

Z
T > 200 GeV. After applying the selections, we obtain

approximately 1.6 million events from each generator.

Any suitable machine learning architecture can be used
for OmniFold. For this study, we use Particle Flow
Networks (PFNs) [36, 37] to process jets in their natu-
ral representation as sets of particles. Intuitively, PFNs
learn and processes a set of additive observables via

PFN({pi}M
i=1

) = F

⇣PM
i=1

�(pi)
⌘

for an event with M

particles pi, where F and � are parameterized by fully-
connected networks. We specify the particles by their
transverse momentum pT , rapidity y, azimuthal angle

�, and particle identification code [38], restricted to the
experimentally-accessible information (PFN-Ex [36]) at
detector-level. To define separate models for Step 1 and
Step 2, we use the PFN architecture and training param-
eters of Ref. [36] with latent space dimension ` = 256,
implemented in the EnergyFlow Python package [39].
Neural networks are trained with Keras [40] and Tensor-
Flow [41] using the Adam [42] optimization algorithm.
The models are randomly initialized in the first iteration
and subsequently warm-started using the model from the
previous iteration. 20% of the events are reserved as a
validation set during training.

To investigate the unfolding performance, we consider
six widely-used jet substructure observables [43]. The
first four are jet mass m, constituent multiplicity M , the

N -subjettiness ratio ⌧

21

= ⌧

(�=1)

2

/⌧

(�=1)

1

[44, 45], and the

jet width w (implemented as ⌧

(�=1)

1

). Since jet groom-
ing [46–50] is of recent interest, we also show the jet mass
ln ⇢ = ln m

2

SD

/p

2

T and momentum fraction zg after Soft
Drop grooming [49, 50] with z

cut

= 0.1 and � = 0. Sev-
eral of these observables are computed with the help of
FastJet Contrib 1.042 [51].

The unfolding performance of OmniFold is shown in

One unfolding for OmniFold, 6 (one per) for IBU.

OmniFold is:
- Unbinned
- Full phase space (compute observables post-facto)
- Improves the resolution from auxiliary features

extreme example: measured|true = true +X

X ⇠ N (µ,�)

If you control for X (=auxiliary feature), response is a delta-function!



�31Intermediate summary

New simulations
morph one simulation into another

Continuous variations
learn the dependence on parameters

Parameter estimation
use classification loss to fit parameters
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�32Uncertainties

“But what are the uncertainties on the NN”?
- question asked by every reviewer



�33Setup
To keep things simple, let’s use 
the following common example:

1. Train a classifier (in sim.) for signal vs. background.  
2. Define a control region and a signal region using (1). 
3. Normalize simulation in CR. 
4. Compare data and scaled simulation in SR.   
5. Significantly different? go to Stockholm; else publish limits.

CR
SR
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�34Uncertainties for a NN-based analysis

Precision / Optimality

Accuracy / Bias

Bad use of our data, time, money, etc. but not wrong.



�35Uncertainties for a NN-based analysis

Accuracy / Bias

Precision / Optimality: NN(x) 6= ptrue(x|S+B)
ptrue(x|B)

Optimal by Neyman-Pearson

Note that this is not p(x|S) / p(x|B), however the 
two are monotonically related to each other.



�36Uncertainties for a NN-based analysis

Precision / Optimality: NN(x) 6= ptrue(x|S+B)
ptrue(x|B)

Accuracy / Bias: p
prediction

(NN) 6= p
true

(NN).

The distribution of the scaled sim. is not correct.
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�38How to estimate precision stat. uncerts.

You can always accomplish this by 
bootstrapping: making pseudo-datasets 

from resampling and then retraining.

It is important to fix the NN initialization so that 
you are not also testing your sensitivity to that.

This can be painful because it 
requires retraining many NNs.



�39How to estimate precision stat. uncerts.

Alternative: train one Bayesian NN?!

S. Bollweg, M. Haußmann, G. Kasieczka, M. 
Luchmann, T. Plehn, J. Thompson, 1904.10004

SciPost Physics Submission

Figure 4: Correlation between predictive mean and standard deviation. The error bars in the
upper left panel correspond to five independent trainings and indicate the uncertainty on the
uncertainty given by the BNN. The right panel shows the predictive standard deviation for
µ

pred

= 0.45 ... 0.55 as a function of the size of the training sample with the same error bars
from di↵erent trainings. The lower panels instead show the statistical spread for 10k jets,
signal and background combined.

0.45 ... 0.55 as a function of the size of the training sample. The estimated uncertainty on
the tagger output decreases monotonically from 16% to 12% when we increase the training
sample from 100k to 1.2M jets. This improvement is significant compared to the error bars,
which correspond to di↵erent training and testing samples.

Finally, the spread of these 10k signal and background jets is illustrated in the four lower
panels, with a matching color code. We immediately see that the spread is strongly reduced
for larger training samples.

3.2 In-situ calibration of weight distribution

Before we attempt to compare the output of the BNN to a frequentist distribution of many
deterministic neural networks we can apply a cross check within the Bayesian framework itself
and construct a hybrid version of the BNN. This will lead us to another attractive feature of
such networks, their explicit calibration based on training data.

The standard BNN constructs its output distribution by sampling the individual weights
of each layer. They are initialized as a random set of Gaussians with di↵erent means and

11



�40How to estimate precision syst. uncerts.

As with all systematic uncertainties, 
this is hard to quantify.

One component is due to the 
modeling of p(x) - more on this later.

Testing the flexibility of the network requires 
checking the sensitivity to the architecture 

(#layers, nodes/layer, etc.), the initialization, the 
training procedure (#epochs, learning rate, etc.)



�41How to estimate bias stat. uncerts.

This uncertainty is post-training - 
Bayesian NNs unfortunately won’t help.

Unfortunately, this is often not small given 
that we are now probing extreme final states 

and have a limited computing budget.



�42How to estimate bias syst. uncerts.

This is the trickiest one…

…because we need the 
uncertainty on the modeling of x 
and x can be high-dimensional!

In many cases, the uncertainties factorize, e.g. the uncertainty 
on the jet energy is measured and evaluated per jet.

What about physics modeling uncertainties where we usually 
have a two-point comparison?  (e.g. Pythia versus Herwig)



�43High-dimensional Bias Uncertainties

One word of caution: current paradigm for uncertainties 
may be too naive for high-dimensional analysis! 

e.g. for some uncertainties, we often compare two 
different models - one nuisance parameter.

(truly end-to-end)

How can we even see how sensitive we 
are to high-dimensional effects?



�44High-dimensional Bias Uncertainties

One word of caution: current paradigm for uncertainties 
may be too naive for high-dimensional analysis! 

e.g. for some uncertainties, we often compare two 
different models - one nuisance parameter.

(truly end-to-end)

How can we even see how sensitive we 
are to high-dimensional effects?

Answer: borrow tools from AI Safety



�45AI Safety

K. Eykholt et. al, 1707.08945

Figure 1: The left image shows real graffiti on a Stop sign,
something that most humans would not think is suspicious.
The right image shows our a physical perturbation applied
to a Stop sign. We design our perturbations to mimic graffiti,
and thus “hide in the human psyche.”

the viewing camera. Additionally, other practicality chal-
lenges exist: (1) Perturbations in the digital world can be
so small in magnitude that it is likely that a camera will not
be able to perceive them due to sensor imperfections. (2)
Current algorithms produce perturbations that occupy the
background imagery of an object. It is extremely difficult
to create a robust attack with background modifications be-
cause a real object can have varying backgrounds depending
on the viewpoint. (3) The fabrication process (e.g., printing
of perturbations) is imperfect.

Informed by the challenges above, we design Robust

Physical Perturbations (RP

2

), which can generate perturba-
tions robust to widely changing distances and angles of the
viewing camera. RP2 creates a visible, but inconspicuous
perturbation that only perturbs the object (e.g. a road sign)
and not the object’s environment. To create robust perturba-
tions, the algorithm draws samples from a distribution that
models physical dynamics (e.g. varying distances and an-
gles) using experimental data and synthetic transformations
(Figure 2).

Using the proposed algorithm, we evaluate the effective-
ness of perturbations on physical objects, and show that
adversaries can physically modify objects using low-cost
techniques to reliably cause classification errors in DNN-
based classifiers under widely varying distances and angles.
For example, our attacks cause a classifier to interpret a
subtly-modified physical Stop sign as a Speed Limit 45 sign.
Specifically, our final form of perturbation is a set of black
and white stickers that an adversary can attach to a physical
road sign (Stop sign). We designed our perturbations to re-
semble graffiti, a relatively common form of vandalism. It
is common to see road signs with random graffiti or color
alterations in the real world as shown in Figure 1 (the left
image is of a real sign in a city). If these random patterns
were adversarial perturbations (right side of Figure 1 shows
our example perturbation), they could lead to severe conse-
quences for autonomous driving systems, without arousing
suspicion in human operators.

Given the lack of a standardized method for evaluating

Figure 2: RP2 pipeline overview. The input is the target Stop
sign. RP2 samples from a distribution that models physical
dynamics (in this case, varying distances and angles), and
uses a mask to project computed perturbations to a shape
that resembles graffiti. The adversary prints out the resulting
perturbations and sticks them to the target Stop sign.

physical attacks, we draw on standard techniques from the
physical sciences and propose a two-stage experiment de-
sign: (1) A lab test where the viewing camera is kept at
various distance/angle configurations; and (2) A field test
where we drive a car towards an intersection in uncontrolled
conditions to simulate an autonomous vehicle. We test our
attack algorithm using this evaluation pipeline and find that
the perturbations are robust to a variety of distances and
angles.
Our Contributions. Figure 2 shows an overview of our
pipeline to generate and evaluate robust physical adversarial
perturbations.

1. We introduce Robust Physical Perturbations (RP2) to
generate physical perturbations for physical-world ob-
jects that can consistently cause misclassification in a
DNN-based classifier under a range of dynamic physi-
cal conditions, including different viewpoint angles and
distances (Section 3).

2. Given the lack of a standardized methodology in eval-
uating physical adversarial perturbations, we propose
an evaluation methodology to study the effectiveness
of physical perturbations in real world scenarios (Sec-
tion 4.2).

3. We evaluate our attacks against two standard-
architecture classifiers that we built: LISA-CNN with
91% accuracy on the LISA test set and GTSRB-CNN
with 95.7% accuracy on the GTSRB test set. Using two
types of attacks (object-constrained poster and sticker
attacks) that we introduce, we show that RP2 produces
robust perturbations for real road signs. For example,
poster attacks are successful in 100% of stationary and
drive-by tests against LISA-CNN, and sticker attacks
are successful in 80% of stationary testing conditions

Figure 1: The left image shows real graffiti on a Stop sign,
something that most humans would not think is suspicious.
The right image shows our a physical perturbation applied
to a Stop sign. We design our perturbations to mimic graffiti,
and thus “hide in the human psyche.”

the viewing camera. Additionally, other practicality chal-
lenges exist: (1) Perturbations in the digital world can be
so small in magnitude that it is likely that a camera will not
be able to perceive them due to sensor imperfections. (2)
Current algorithms produce perturbations that occupy the
background imagery of an object. It is extremely difficult
to create a robust attack with background modifications be-
cause a real object can have varying backgrounds depending
on the viewpoint. (3) The fabrication process (e.g., printing
of perturbations) is imperfect.

Informed by the challenges above, we design Robust

Physical Perturbations (RP

2

), which can generate perturba-
tions robust to widely changing distances and angles of the
viewing camera. RP2 creates a visible, but inconspicuous
perturbation that only perturbs the object (e.g. a road sign)
and not the object’s environment. To create robust perturba-
tions, the algorithm draws samples from a distribution that
models physical dynamics (e.g. varying distances and an-
gles) using experimental data and synthetic transformations
(Figure 2).

Using the proposed algorithm, we evaluate the effective-
ness of perturbations on physical objects, and show that
adversaries can physically modify objects using low-cost
techniques to reliably cause classification errors in DNN-
based classifiers under widely varying distances and angles.
For example, our attacks cause a classifier to interpret a
subtly-modified physical Stop sign as a Speed Limit 45 sign.
Specifically, our final form of perturbation is a set of black
and white stickers that an adversary can attach to a physical
road sign (Stop sign). We designed our perturbations to re-
semble graffiti, a relatively common form of vandalism. It
is common to see road signs with random graffiti or color
alterations in the real world as shown in Figure 1 (the left
image is of a real sign in a city). If these random patterns
were adversarial perturbations (right side of Figure 1 shows
our example perturbation), they could lead to severe conse-
quences for autonomous driving systems, without arousing
suspicion in human operators.

Given the lack of a standardized method for evaluating

Figure 2: RP2 pipeline overview. The input is the target Stop
sign. RP2 samples from a distribution that models physical
dynamics (in this case, varying distances and angles), and
uses a mask to project computed perturbations to a shape
that resembles graffiti. The adversary prints out the resulting
perturbations and sticks them to the target Stop sign.

physical attacks, we draw on standard techniques from the
physical sciences and propose a two-stage experiment de-
sign: (1) A lab test where the viewing camera is kept at
various distance/angle configurations; and (2) A field test
where we drive a car towards an intersection in uncontrolled
conditions to simulate an autonomous vehicle. We test our
attack algorithm using this evaluation pipeline and find that
the perturbations are robust to a variety of distances and
angles.
Our Contributions. Figure 2 shows an overview of our
pipeline to generate and evaluate robust physical adversarial
perturbations.

1. We introduce Robust Physical Perturbations (RP2) to
generate physical perturbations for physical-world ob-
jects that can consistently cause misclassification in a
DNN-based classifier under a range of dynamic physi-
cal conditions, including different viewpoint angles and
distances (Section 3).

2. Given the lack of a standardized methodology in eval-
uating physical adversarial perturbations, we propose
an evaluation methodology to study the effectiveness
of physical perturbations in real world scenarios (Sec-
tion 4.2).

3. We evaluate our attacks against two standard-
architecture classifiers that we built: LISA-CNN with
91% accuracy on the LISA test set and GTSRB-CNN
with 95.7% accuracy on the GTSRB test set. Using two
types of attacks (object-constrained poster and sticker
attacks) that we introduce, we show that RP2 produces
robust perturbations for real road signs. For example,
poster attacks are successful in 100% of stationary and
drive-by tests against LISA-CNN, and sticker attacks
are successful in 80% of stationary testing conditions

There is a vast literature 
on how easy it is to 

“attack” a NN.
They want to know: how subtle 

can an attack be and still 
significantly impact the output.

We know (hope?!) 
that nature is not evil, 
but these tools can 
help us probe the 
high-dimensional 

sensitivity of our NNs.
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represents a worst-case scenario only for a specific class
of mismodeling. As it turns out, even this restricted form
of attack can have surprisingly large e↵ects; we leave the
assessment of sensitivity to more general attack models
to future work.

The adversarial network is trained by minimizing sep-
arate loss functions for signal and background defined
by:

L
sig

= log(1� f(g(J))), (2)

L
bg

= �
cls

(f(J)� f(g(J)))2

+
X

i

�(i)
obs

(O(i)(J)�O(i)(g(J))2 . (3)

L
sig

is the categorical crossentropy, which impels g to
modify signal jets so as to be labeled as background by f .
The first term of L

bg

minimizes changes between the tar-
get network’s response to the jet before and after the ad-
versarial perturbation. The functions O(i)(J) : R3N ! R
represent any features of interest to be preserved. The

tunable hyperparameters �
cls

,�(i)
obs

� 0 encode the ad-
versary’s preference to preserve the target network re-
sponse and observable features, respectively, for back-
ground events.

In our experiments, g is a fully-connected network with
4 hidden layers, each with 300 units and ReLU activation.
The penultimate layer has 64⇥3 units, with tanh activa-
tion. Analogously to the sign function in Eq. 1 and the
bounding parameters ✏ in Sec. III A, the outputs of the fi-
nal layer are bounded by applying a tanh activation, and
the axes corresponding to p

T

, ⌘, and � are scaled by pa-
rameters ⇢pT , ⇢⌘, and ⇢�, respectively. The output of this
layer represents a di↵erential change in the input jet, �J .
The final layer is essentially a residual skip-connection
layer computing J + �J as described in Sec. IIIA.

Separate adversaries are trained for each of the HL
and LL benchmark networks. In all cases, the bounding
magnitude of the constituent perturbations are fixed at
~⇢ = 0.02, which is slightly larger than the scale of pertur-
bations for the FGSM. Two observable constraints are in-
cluded in L

bg

: the jet mass and p
T

. The parameters �
cls

and �
obs

are tuned by training until either convergence
or until certain validation criteria are violated. The val-
idation criteria are met when the Kolmogorov-Smirno↵
(KS) test statistic between perturbed and unperturbed
background distributions are below heuristically-defined
thresholds of 0.04 for jet mass and p

T

, and 0.02 for clas-
sifier response. In practice, these thresholds would be
set by the data statistics as well as the size of known
experimental uncertainties. A more realistic test in prac-
tice is to consider the �2 agreement between validation
histograms evaluated in an unblinded control region, as
illustrated in Fig. 1 for the case of the LL network.

FIG. 1: Illustration of typical validation procedure.
Pseudodata (black points) are sampled from the BG

distribution with the adversarial perturbation applied; solid
histograms show the unperturbed BG model. Top: The
unshaded control region in this case is defined where the

signal e�ciency is expected to be less than 10%; the shaded
region would typically be blinded when designing an

experiment. The green vertical line indicates the expected
optimal signal region. Middle, Bottom: The jet pT and mass

distributions for events in the control region. Good
agreement is observed between the “observed” pseudodata

and the expected background model in the control region for
all three observables. The �2/ndf values are 14.7/14,

25.0/40, and 37.8/40 repsectively.

IV. RESULTS

To quantify the e↵ect of these adversarial attacks, we
consider a simplified example of a typical experimental
analysis in HEP. If S and B are the predicted number of
signal and background events, respectively, then in the
asymptotic limit (S +B � 1, S ⌧ B [30]), the expected
statistical significance of an observation with respect to
the background-only hypothesis is S/

p
B, in units of

standard deviations. After considering only events that
pass a classifier threshold, the relative change in the sig-
nificance is ✏S/

p
✏B , where ✏S is the true positive rate

(signal e�ciency) and ✏B is the false positive rate (back-
ground e�ciency). A classifier is only useful for improv-
ing the sensitivity of a search if this relative discovery
significance exceeds unity. The relative discovery signif-

J = jet (in all of its high-dimensional glory)

f = fixed classifier for signal vs. background

g is a learned NN that maps J to J + dJ.

O(J) are observables that will be validated in the CR.
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4

represents a worst-case scenario only for a specific class
of mismodeling. As it turns out, even this restricted form
of attack can have surprisingly large e↵ects; we leave the
assessment of sensitivity to more general attack models
to future work.

The adversarial network is trained by minimizing sep-
arate loss functions for signal and background defined
by:

L
sig

= log(1� f(g(J))), (2)

L
bg

= �
cls

(f(J)� f(g(J)))2

+
X

i

�(i)
obs

(O(i)(J)�O(i)(g(J))2 . (3)

L
sig

is the categorical crossentropy, which impels g to
modify signal jets so as to be labeled as background by f .
The first term of L

bg

minimizes changes between the tar-
get network’s response to the jet before and after the ad-
versarial perturbation. The functions O(i)(J) : R3N ! R
represent any features of interest to be preserved. The

tunable hyperparameters �
cls

,�(i)
obs

� 0 encode the ad-
versary’s preference to preserve the target network re-
sponse and observable features, respectively, for back-
ground events.

In our experiments, g is a fully-connected network with
4 hidden layers, each with 300 units and ReLU activation.
The penultimate layer has 64⇥3 units, with tanh activa-
tion. Analogously to the sign function in Eq. 1 and the
bounding parameters ✏ in Sec. III A, the outputs of the fi-
nal layer are bounded by applying a tanh activation, and
the axes corresponding to p

T

, ⌘, and � are scaled by pa-
rameters ⇢pT , ⇢⌘, and ⇢�, respectively. The output of this
layer represents a di↵erential change in the input jet, �J .
The final layer is essentially a residual skip-connection
layer computing J + �J as described in Sec. IIIA.

Separate adversaries are trained for each of the HL
and LL benchmark networks. In all cases, the bounding
magnitude of the constituent perturbations are fixed at
~⇢ = 0.02, which is slightly larger than the scale of pertur-
bations for the FGSM. Two observable constraints are in-
cluded in L

bg

: the jet mass and p
T

. The parameters �
cls

and �
obs

are tuned by training until either convergence
or until certain validation criteria are violated. The val-
idation criteria are met when the Kolmogorov-Smirno↵
(KS) test statistic between perturbed and unperturbed
background distributions are below heuristically-defined
thresholds of 0.04 for jet mass and p

T

, and 0.02 for clas-
sifier response. In practice, these thresholds would be
set by the data statistics as well as the size of known
experimental uncertainties. A more realistic test in prac-
tice is to consider the �2 agreement between validation
histograms evaluated in an unblinded control region, as
illustrated in Fig. 1 for the case of the LL network.

FIG. 1: Illustration of typical validation procedure.
Pseudodata (black points) are sampled from the BG

distribution with the adversarial perturbation applied; solid
histograms show the unperturbed BG model. Top: The
unshaded control region in this case is defined where the

signal e�ciency is expected to be less than 10%; the shaded
region would typically be blinded when designing an

experiment. The green vertical line indicates the expected
optimal signal region. Middle, Bottom: The jet pT and mass

distributions for events in the control region. Good
agreement is observed between the “observed” pseudodata

and the expected background model in the control region for
all three observables. The �2/ndf values are 14.7/14,

25.0/40, and 37.8/40 repsectively.

IV. RESULTS

To quantify the e↵ect of these adversarial attacks, we
consider a simplified example of a typical experimental
analysis in HEP. If S and B are the predicted number of
signal and background events, respectively, then in the
asymptotic limit (S +B � 1, S ⌧ B [30]), the expected
statistical significance of an observation with respect to
the background-only hypothesis is S/

p
B, in units of

standard deviations. After considering only events that
pass a classifier threshold, the relative change in the sig-
nificance is ✏S/

p
✏B , where ✏S is the true positive rate

(signal e�ciency) and ✏B is the false positive rate (back-
ground e�ciency). A classifier is only useful for improv-
ing the sensitivity of a search if this relative discovery
significance exceeds unity. The relative discovery signif-

J = jet (in all of its high-dimensional glory)

f = fixed classifier for signal vs. background

g is a learned NN that maps J to J + dJ.

O(J) are observables that will be validated in the CR.
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Fun fact: this requires 
computing O in the NN - 

now have GPU 
implementations of many 
standard observables!
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Example case: Boosted Z’s versus QCD
7

FIG. 5: Comparison of the e↵ect the adversarial network
perturbations on the LL and HL classifier response, as well

as various jet observables.

high-dimensional systematic uncertainties.
In any case, for now the method described here o↵ers

the only rigorous means for quantifying how sensitive an
analysis procedure is to high-dimensional mismodeling.
A given analysis procedure, including the control/signal
region definition and any auxiliary features that will be
validated in data, can be attacked to quantify the impact

on the signal sensitivity. While general methods from AI
safety may also be useful for making classifiers robust
to attacks, Sec. IV demonstrated that networks based
on physically-motivated features can be less sensitive to
adversarial perturbations, if only because it is feasible
to ensure these observables are modeled reliably. How-
ever, it may be possible to design sensitive architectures
that are able to leverage low-level information while re-
maining robust against adversarial attacks, for example
by exploiting symmetries and other physically-motivated
constraints. Additionally, evidence suggests that pur-
posefully undertraining HDLL networks may serve to re-
duce systematic exposure while meeting the performance
of simpler HL network models.
Even though the adversarial methods presented in

Sec. IV were able to make targeted attacks knowing the
full form of the classifier, they are not the most gen-
eral attack possible. First of all, the perturbations were
not allowed to split particles into multiple particles nor
were they able to add new particles. The modeling of
such ‘soft’ and ‘collinear’ physics is particularly challeng-
ing and so such e↵ects are an interesting class of per-
turbations for future studies. Second, the true values of
individual features or combinations of features are not
observable - only distribution-level statistics can be val-
idated. In this work, per-constituent perturbations were
constrained to ensure that observable features were ap-
proximately unperturbed on a jet-by-jet basis. However,
it is worth considering adversarial examples which have
limited resemblance to any particular jet in the origi-
nal dataset, while preserving properties of ensembles of
events (such as the jet mass distribution). One may be
able to generalize the procedures described here using
constraints on su�ciently large mini-batches or even on
entire datasets.

VI. CONCLUSIONS

The interest in deep learning methods for HEP has
grown significantly since the first studies were published
five years ago [4]. While these methods hold great
promise to enhance experimental sensitivity to discover
new fundamental properties of nature, conventional anal-
ysis techniques must be updated. We have shown that
neural networks using high-dimensional low-level features
(and to a lesser extent, high-dimensional high-level fea-
tures) are highly sensitive to mismodeled inputs. Current
uncertainty estimates may not be su�cient to address
uncertainties involved when using high-dimensional fea-
tures, and traditional validation methods may be ine↵ec-
tive in detecting such problems. We have proposed adver-
sarial approaches to evaluate and compare the sensitivity
of deep learning-based analysis procedures. While this is
a crude bound, it may be used to demonstrate robustness
against specific classes of uncertainty, or to diagnose sit-
uations where further studies are needed. This work will
hopefully begin a dialogue within the community about

HL = network with small 
number of engineered features

LL = network trained on 
4-vectors

It is “easy” to preserve the 
blue and modify the orange.

LL NN

HL NN

pT

mass

pronginess



�49High-dimensional Uncertainty



�50High-dimensional Uncertainty
9

FIG. 6: The relationship between the area under the curve
(AUC) of a network and the worse-case relative loss in

discovery significance after an adversarial attack. Networks
to the right are more sensitive to new particles in simulation
and networks near the bottom are more susceptible to an

attack.

Under training may help with robustness:

Perturbed significance improvement / nom. sig. improvement

more robust

better 
performance
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Train with more events!



�52How to reduce precision stat. uncerts.

Train with more events!

…maybe use NN’s to help with that

M. Paganini, L. de Oliveira, BPN, PRL 120 (2018) 042003 + many others (including some from other people here!)



�53How to reduce precision syst. uncerts.

You might be tempted to force 
the NN to not depend on some 

uncertain parameters.

There are many ways to do this, e.g. 
adversarial techniques1 or DisCo2

Unless this is needed to estimate the 
background3, this is usually suboptimal and 

may not even reduce the uncertainty.

1. G. Louppe, M. Kagan, K. Cranmer, 1611.01046  
2. Gregor Kasieczka and D. Shih, 2001.05310 
3. C. Shimmin et al. Phys. Rev. D 96, 074034 (2017), and many others including (2)



�54How to reduce precision syst. uncerts.

Profiling instead of pivoting:
there must be enough ‡ values to ensure an accurate interpolation. This can be especially
challenging if ‡ is multi-dimensional. In practice, learning to profile will likely work well for
nuisance parameters that only require a variation in the final analysis inputs (such as the
jet energy scale variation) and not for parameters that require rerunning an entire detector
simulation (such varying fragmentation model parameters). For the latter case, one may be
able to use high-dimensional reweighting to emulate parameter variations without expensive
detector simulations [34].
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Figure 7. Left: The functional form of f‡(y) alongside a binned version of the likelihood ratio for
values of ‡ not presented to the neural network during training: ‡ œ {0.03, 0.06}. Right: The statistical
uncertainty on the value of µ when performing a statistical test with f‡Õ(y) where ‡

Õ is the value of
the nuisance parameter used in the training. The true value of ‡ (the one used in testing) is indicated
by vertical dashed lines. This test used |Y| = 104.

4.4 High-dimensional bias uncertainties

The single biggest challenge to using high-dimensional features for neural networks is estimating
high-dimensional uncertainties. Many sources of experimental uncertainty factorize into
independent terms for each object. However, physics modeling uncertainties are often grouped
into two-point variations that cover many physical e�ects all at once. These uncertainties
may no longer be appropriate when the input features are high-dimensional (see also Sec. 4.3).
There are additional complications when computing uncertainties beyond 1‡ and even for the
1‡ uncertainties if the NN is a non-monotonic transformation of the input as quantiles are not
preserved.

The fact that this section is short is an indication that new ideas are needed in this area.

– 15 –

Better to do the opposite: let your NN 
depend explicitly on uncertainty 
quantities and then profile them!



�55How to get around high-D bias uncerts?

Work hard to understand the true nuisance 
parameters in the hypervariate parameter space.

In my opinion, this is THE biggest 
challenge with deploying NN-

based analyses … solving it will 
require hard physics work.



�56How to get around high-D bias uncerts?

Work hard to understand the true nuisance 
parameters in the hypervariate parameter space.

Don’t use simulation!
(not always possible!)
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Figure 8. Left: m
JJ

distribution of dijet events (including injected signal, indicated by the filled
histogram) before and after applying jet substructure cuts using the NN classifier output for the
m

JJ

' 3 TeV mass hypothesis. The dashed red lines indicate the fit to the data points outside of the
signal region, with the gray bands representing the fit uncertainties. The top dataset is the raw dijet
distribution with no cut applied, while the subsequent datasets have cuts applied at thresholds with
e�ciency of 10�1, 10�2, 2 ⇥ 10�3, and 2 ⇥ 10�4. Right: Local p0-values for a range of signal mass
hypotheses in the case that no signal has been injected (left), and in the case that a 3 TeV resonance
signal has been injected (right). The dashed lines correspond to the case where no substructure cut
is applied, and the various solid lines correspond to cuts on the classifier output with e�ciencies of
10�1, 10�2, and 2 ⇥ 10�3.

Figure 9. Events projected onto the 2D plane of the two jet masses. The classifiers are trained to
discriminate events in the signal region (left plot) from those in the sideband (second plot). The third
plot shows in red the 0.2% most signal-like events determined by the classifier trained in this way. The
rightmost plot shows in red the truth-level signal events.

signal region from those of the sideband, the 0.2% most signal-like events as determined by

the classifier are plotted in red in the third plot of Fig. 9, overlaid on top of the remaining

events in gray. The classifier has selected a population of events with m
J A

' 400 GeV and

– 15 –
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J. Collins, K. Howe, BPN,  
Phys. Rev. Lett. 121 (2018) 241803



�57What is the problem?

Why can’t I just pay some physicists to label events  
and then train a neural network using those labels?

Answer: this is not cats-versus-dogs … thanks to quantum 
mechanics it is not possible to know what happened.

Image credit: pixabay.com

http://pixabay.com


�58What is the problem?

The data are unlabeled and in the best case, come to us  
as mixtures of two classes (“signal” and “background”).
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M
1

and M
2

defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f
1

> f
2

, an optimal classifier trained to

distinguish M
1

from M
2

is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f
1

pS + (1� f
1

) pB
f
2

pS + (1� f
2

) pB
=

f
1

LS/B + (1� f
1

)

f
2

LS/B + (1� f
2

)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f
1

> f
2

, since

@LS/B
LM1/M2

= (f
1

� f
2

)/(f
2

LS/B � f
2

+ 1)2 > 0. If f
1

< f
2

, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f
1

and f
2

are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that

– 5 –

(we don’t get to observe the color of the circles)
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M
1

and M
2

defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f
1

> f
2

, an optimal classifier trained to

distinguish M
1

from M
2

is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f
1

pS + (1� f
1

) pB
f
2

pS + (1� f
2

) pB
=

f
1

LS/B + (1� f
1

)

f
2

LS/B + (1� f
2

)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f
1

> f
2

, since

@LS/B
LM1/M2

= (f
1

� f
2

)/(f
2

LS/B � f
2

+ 1)2 > 0. If f
1

< f
2

, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f
1

and f
2

are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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E. Metodiev, BPN, J. Thaler, JHEP 10 (2017) 51

Weak supervision: 
Classification Without Labels

Can we learn 
without any label 

information?
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M
1

and M
2

defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f
1

> f
2

, an optimal classifier trained to

distinguish M
1

from M
2

is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f
1

pS + (1� f
1

) pB
f
2

pS + (1� f
2

) pB
=

f
1

LS/B + (1� f
1

)

f
2

LS/B + (1� f
2

)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f
1

> f
2

, since

@LS/B
LM1/M2

= (f
1

� f
2

)/(f
2

LS/B � f
2

+ 1)2 > 0. If f
1

< f
2

, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f
1

and f
2

are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Yes !
Training on impure 

samples is 
(asymptotically) 

equivalent to training 
on pure samples

Can we learn 
without any label 

information?



Solution: Train directly on data using 
mixed samples
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How can we use CWoLa to hunt for new particles?

*Image from The Courier Mail.  Koala is actually being freed - I do not condone violence against these animals!

Anomaly detection + weak supervision
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How can we use CWoLa to hunt for new particles?

*Image from The Courier Mail.  Koala is actually being freed - I do not condone violence against these animals!

CWoLa Hunting
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M
1

and M
2

defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f
1

> f
2

, an optimal classifier trained to

distinguish M
1

from M
2

is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
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Figure 8. Left: m
JJ

distribution of dijet events (including injected signal, indicated by the filled
histogram) before and after applying jet substructure cuts using the NN classifier output for the
m

JJ

' 3 TeV mass hypothesis. The dashed red lines indicate the fit to the data points outside of the
signal region, with the gray bands representing the fit uncertainties. The top dataset is the raw dijet
distribution with no cut applied, while the subsequent datasets have cuts applied at thresholds with
e�ciency of 10�1, 10�2, 2 ⇥ 10�3, and 2 ⇥ 10�4. Right: Local p0-values for a range of signal mass
hypotheses in the case that no signal has been injected (left), and in the case that a 3 TeV resonance
signal has been injected (right). The dashed lines correspond to the case where no substructure cut
is applied, and the various solid lines correspond to cuts on the classifier output with e�ciencies of
10�1, 10�2, and 2 ⇥ 10�3.

Figure 9. Events projected onto the 2D plane of the two jet masses. The classifiers are trained to
discriminate events in the signal region (left plot) from those in the sideband (second plot). The third
plot shows in red the 0.2% most signal-like events determined by the classifier trained in this way. The
rightmost plot shows in red the truth-level signal events.

signal region from those of the sideband, the 0.2% most signal-like events as determined by

the classifier are plotted in red in the third plot of Fig. 9, overlaid on top of the remaining

events in gray. The classifier has selected a population of events with m
J A

' 400 GeV and
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Our first data result* from ATLAS will come out this spring!
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Answer: 
Simulation Assisted Likelihood-free Anomaly Detection 

(aka SALAD)

NewNew

We want to reduce our dependence on simulation, but 
we also don’t want to throw away our physics priors!

Can we use simulations in a way that is 
(nearly) simulation-independent?
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Mask Features

(1) Train DCTR in the sidebands 
to reweight MC to data
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(2) Interpolate 
DCTR to 

signal region

(3) Train classifier 
to distinguish 

reweighted MC 
from data 
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Can also use SALAD for background estimation - see backup
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�96Outline for today

- (Optimally) using NNs for analysis 

- Improving search sensitivity 

- Enhancing SM measurements 

- Uncertainties with NNs 

- What are they? 

- How to improve  

         (or avoid)? 

- Anomaly detection

DCTR, OmniFold

Optimality/Precision uncertainties
Adversarial upper bounds

Weak supervision
CWoLa (hunting), SALAD



Deep learning has a great 
potential to enhance, 

accelerate, and 
empower HEP analyses.

However, we need to be 
careful about uncertainties - in 

some cases were are 
estimating the wrong ones 

and in others, we are ignoring!
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two classes. In the traditional classification paradigm of fully supervised training, the function ffull is
built by minimizing a loss function like the following:

ffull = argmin
f

0:Rn!{0,1}

NX

i=1

` (f 0(x
i

)� t

i

) , (2.1)

where N is the number of labeled data available for training, ` is a loss function with lim
x!0 `(x) = 0,

and t

i

is the true label of example i. A common loss function is the squared error. In order to
provide flexibility and stability, one often modifies the original problem to take f : Rn ! [0, 1] and the
output is interpreted as a probability for an event to be in class 0 or 1. The ideal classifier that one
tries to approximate with Eq. 2.5 is based on the likelihood ratio p(~x|0)/p(~x|1), where p(~x|i) is the
n-dimensional probability density for the feature vector ~x for the class i 2 {0, 1}. Weakly supervised

classification is a new paradigm in which instead of knowing the t
i

, all that is known is the proportion
of events in either class: y =

P
i

t

i

/N . Thus, the weakly supervised fweak is given by

fweak = argmin
f

0:Rn![0,1]`

 
NX

i=1

f

0(x
i

)

N

� y

!
. (2.2)

The argument of Eq. 2.2 is non-convex, with many minima. In particular, the trivial solution f

0(x) =
y results in a loss of zero. However, using multiple batches of data with di↵erent proportions y

j

is su�cient to collapse the solution space, so long as the distribution p(~x|i; j) = p(~x|i), i.e. the
distribution of the discriminating features for a particular class is the same in every batch j. To build
intuition for why there is any hope to solve this problem, consider a case where there are two batches
A and B with proportions y

A

and y

B

. Consider an n-dimensional histogram where the i

th dimension
captures a discretized version of the i

th discriminating feature. If the i

th dimension has m
i

bins, then
the total number of bins in the histogram is M =

P
n

i=1 mi

. One can always rearrange bins so that
instead of an n-dimensional histogram with m

i

bins in the i

th dimension, there is a one-dimensional
histogram with M bins. As visualizing high dimensional histograms can be cumbersome, let h

A

be
one-dimensional histograms with M bins for the batch A and h

B

be the corresponding histogram for
batch B. Then, for each bin i, one can write

h

A,i

= y

A

h1,i + (1� y

A

)h0,i (2.3)

h

B,i

= y

B

h1,i + (1� y

B

)h0,i, (2.4)

where h
X,i

is the content of the ith bin of the histogram h

X

. Except for contrived scenarios, Eq. 2.3 will
have a unique solution for h0,i and h1,i, which are discretized versions of the probability densities p(~x|0)
and p(~x|1). One can then form an (approximately) optimal classifier from the ratio of histograms with
bin contents h0,i/h1,i. If the number of dimensions is large, one can add a further step to use machine
learning to approximate the optimal classifier from h0,i and h1,i. As a result, the problem is completely
solvable. Weakly supervised training combines the classification step with the first step and does so
without binning. Solving Eq. 2.3 ‘by-hand’ is intractable when n is relatively large or the number
of examples is relatively small. It is also complicated when there are more than two batches (over-
constrained). These challenges are all naturally handled by the all-in-one machine learning approach
of weakly supervised classification, as illustrated below.
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�102What is the network learning?

Learns to find the signal !
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Figure 11. Truth-label ROC curves for taggers trained using CWoLa with varying number of signal
events, compared to those for a dedicated tagger trained on pure signal and background samples
(dashed black) and one trained to discriminate W and Z jets from QCD (dot-dashed black). The
CWoLa examples have B = 81341 in the signal region and S = (230, 352, 472, 697, 927).

the cuts. This illustrates that CWoLa hunting may find unexpected signals which are not

targeted by existing dedicated searches.

One final remark is about how one would use CWoLa hunting to set limits. In the form

described above, the CWoLa hunting approach is designed to find new signals in data without

any model assumptions. However, it is also possible to recast the lack of an excess as setting

limits on particular BSM models. Given a simulated sample for a particular model, it would

be possible to set limits on this model by mixing the simulation with the data and training

a series of classifiers as above and running toy experiments, re-estimating the background

each time. This is similar to the usual bump hunt, except that there is more computational

overhead because the background distribution is determined in part by the neural networks,

and the distribution in expected signal e�ciencies cannot be determined except by these toy

experiments.

5 Conclusions

We have presented a new anomaly detection technique for finding BSM physics signals directly

from data. The central assumption is that the signal is localized as a bump in one variable in

which the background is smooth, and that other features are available for additional discrim-

ination power. This allows us to identify potential signal-enhanced and signal-depleted event

samples with almost identical background characteristics on which a classifier can be trained

using the Classification Without Labels approach. In the case that a distinctive signal is

present, the trained classifier output becomes an e↵ective discriminant between signal events
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Figure 2. The AUC for the LLP and CWoLa methods as a function of the signal fraction f1, for
training sizes Ntrain of (a) 100 events, (b) 1k events, and (c) 10k events. Here, the complementary
signal fraction is f2 = 1� f1. By construction, the AUC for full supervision is independent of f1. The
horizontal dashed line indicates the fully-supervised AUC with infinite training statistics. For Ntrain

su�ciently large and f1 su�cient far from 0.5, all three methods converge to the optimal case.
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(1) Divide the entire dataset into k-folds.
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Figure 7. Illustration of the nested cross-validation procedure. Left: the dataset is randomly
partitioned bin-by-bin into five groups. Center: for each group, an ensemble classifier is trained
on the remaining groups. For each of the four possible combinations of these four groups into three
training groups and one validation group, a set of invidual classifiers are trained and the one with
best validation performance is selected. The ensemble classifier is formed by the average of the four
selected individual classifiers. Right: Data are selected from each test group using a threshold cut
from their corresponding ensemble classifier. The selected events are then merged into a single m

JJ

histogram.

ensemble model is used to classify events in the test set, by selecting the Y % most signal-like

events. This procedure is repeated for all five choices of test set, and the selected events from

each are combined into a signal histogram in m
JJ

. The presence of an identifiable signal will

be indicated by a bump in the signal region, for which standard bump-hunting techniques

can be used to perform a hypothesis test. The use of averaged ensemble models is important

to reduce any performance degradation due to overfitting. Since each of the four models used

to make each ensemble model has been trained on di↵erent training sets and with di↵erent

random weight initialization, they will tend to overfit to di↵erent events. The models will

therefore disagree in regions where overfitting has occurred, but will tend to agree in any

region where a consistent excess is found.

In our study, the classifiers used are dense neural networks built and trained using Keras

with a TensorFlow backend. We use four hidden layers consisting of a first layer of 64 nodes

with a leaky Rectified Linear Unit (ReLU) activation (using an inactive gradient of 0.1), and

second through fourth layers of 32, 16, 4 nodes respectively with Exponential Linear Unit

(ELU) activation [94]. The output node has a sigmoid activation. The first three hidden

layers are regulated with dropout layers with 20% dropout rate [95]. The neural networks are

trained to minimize binary cross-entropy loss using the Adam optimizer with learning rate of
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(2) Train CWoLa classifiers.
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Figure 7. Illustration of the nested cross-validation procedure. Left: the dataset is randomly
partitioned bin-by-bin into five groups. Center: for each group, an ensemble classifier is trained
on the remaining groups. For each of the four possible combinations of these four groups into three
training groups and one validation group, a set of invidual classifiers are trained and the one with
best validation performance is selected. The ensemble classifier is formed by the average of the four
selected individual classifiers. Right: Data are selected from each test group using a threshold cut
from their corresponding ensemble classifier. The selected events are then merged into a single m

JJ

histogram.

ensemble model is used to classify events in the test set, by selecting the Y % most signal-like

events. This procedure is repeated for all five choices of test set, and the selected events from

each are combined into a signal histogram in m
JJ

. The presence of an identifiable signal will

be indicated by a bump in the signal region, for which standard bump-hunting techniques

can be used to perform a hypothesis test. The use of averaged ensemble models is important

to reduce any performance degradation due to overfitting. Since each of the four models used

to make each ensemble model has been trained on di↵erent training sets and with di↵erent

random weight initialization, they will tend to overfit to di↵erent events. The models will

therefore disagree in regions where overfitting has occurred, but will tend to agree in any

region where a consistent excess is found.

In our study, the classifiers used are dense neural networks built and trained using Keras

with a TensorFlow backend. We use four hidden layers consisting of a first layer of 64 nodes

with a leaky Rectified Linear Unit (ReLU) activation (using an inactive gradient of 0.1), and

second through fourth layers of 32, 16, 4 nodes respectively with Exponential Linear Unit

(ELU) activation [94]. The output node has a sigmoid activation. The first three hidden

layers are regulated with dropout layers with 20% dropout rate [95]. The neural networks are

trained to minimize binary cross-entropy loss using the Adam optimizer with learning rate of
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(2) Train CWoLa classifiers.
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Figure 7. Illustration of the nested cross-validation procedure. Left: the dataset is randomly
partitioned bin-by-bin into five groups. Center: for each group, an ensemble classifier is trained
on the remaining groups. For each of the four possible combinations of these four groups into three
training groups and one validation group, a set of invidual classifiers are trained and the one with
best validation performance is selected. The ensemble classifier is formed by the average of the four
selected individual classifiers. Right: Data are selected from each test group using a threshold cut
from their corresponding ensemble classifier. The selected events are then merged into a single m

JJ

histogram.

ensemble model is used to classify events in the test set, by selecting the Y % most signal-like

events. This procedure is repeated for all five choices of test set, and the selected events from

each are combined into a signal histogram in m
JJ

. The presence of an identifiable signal will

be indicated by a bump in the signal region, for which standard bump-hunting techniques

can be used to perform a hypothesis test. The use of averaged ensemble models is important

to reduce any performance degradation due to overfitting. Since each of the four models used

to make each ensemble model has been trained on di↵erent training sets and with di↵erent

random weight initialization, they will tend to overfit to di↵erent events. The models will

therefore disagree in regions where overfitting has occurred, but will tend to agree in any

region where a consistent excess is found.

In our study, the classifiers used are dense neural networks built and trained using Keras

with a TensorFlow backend. We use four hidden layers consisting of a first layer of 64 nodes

with a leaky Rectified Linear Unit (ReLU) activation (using an inactive gradient of 0.1), and

second through fourth layers of 32, 16, 4 nodes respectively with Exponential Linear Unit

(ELU) activation [94]. The output node has a sigmoid activation. The first three hidden

layers are regulated with dropout layers with 20% dropout rate [95]. The neural networks are

trained to minimize binary cross-entropy loss using the Adam optimizer with learning rate of
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(3) Apply classifiers to holdout test sets and sum.
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Figure 7. Illustration of the nested cross-validation procedure. Left: the dataset is randomly
partitioned bin-by-bin into five groups. Center: for each group, an ensemble classifier is trained
on the remaining groups. For each of the four possible combinations of these four groups into three
training groups and one validation group, a set of invidual classifiers are trained and the one with
best validation performance is selected. The ensemble classifier is formed by the average of the four
selected individual classifiers. Right: Data are selected from each test group using a threshold cut
from their corresponding ensemble classifier. The selected events are then merged into a single m

JJ

histogram.

ensemble model is used to classify events in the test set, by selecting the Y % most signal-like

events. This procedure is repeated for all five choices of test set, and the selected events from

each are combined into a signal histogram in m
JJ

. The presence of an identifiable signal will

be indicated by a bump in the signal region, for which standard bump-hunting techniques

can be used to perform a hypothesis test. The use of averaged ensemble models is important

to reduce any performance degradation due to overfitting. Since each of the four models used

to make each ensemble model has been trained on di↵erent training sets and with di↵erent

random weight initialization, they will tend to overfit to di↵erent events. The models will

therefore disagree in regions where overfitting has occurred, but will tend to agree in any

region where a consistent excess is found.

In our study, the classifiers used are dense neural networks built and trained using Keras

with a TensorFlow backend. We use four hidden layers consisting of a first layer of 64 nodes

with a leaky Rectified Linear Unit (ReLU) activation (using an inactive gradient of 0.1), and

second through fourth layers of 32, 16, 4 nodes respectively with Exponential Linear Unit

(ELU) activation [94]. The output node has a sigmoid activation. The first three hidden

layers are regulated with dropout layers with 20% dropout rate [95]. The neural networks are

trained to minimize binary cross-entropy loss using the Adam optimizer with learning rate of
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