Angle Calibration of emulsion read-out system for gamma-ray telescope by test beam

Nagoya University Yuya Nakamura for GRAINE collaboration

Abstract

In our laboratory we use Hyper Track Selector (HTS) which is the world's fastest emulsion read-out system. HTS has an optical systematic error in angular measurement caused by difference of refractive index between emulsion and base film, and it makes 3% uncertainty in absolute angle. Such kind of error is a factor which makes imaging performance of gamma-ray telescope worse at larger angle. I conducted calibration by a beam test with

400 GeV proton beam at SPS/CERN to reduce that uncertainty to 1% or less.

Application of emulsion is expanding

Emulsion is 3D track detector with sub-micron accuracy. Recently application of emulsion is expanding into imaging fields (cosmic gamma-ray observation, muon-radiography).

GRAINE

Gamma-Ray Astro-Imager with Nuclear Emulsion

GRAINE is gamma-ray telescope experiment with nuclear emulsion. A demonstration test was performed with a balloon-borne emulsion telescope in 2015. The aim is to detect Vela pulsar at 200MeV energy region. Angular resolution is expected to be 10mrad at 200MeV with MC.

grain(Ag)

HTS has an optical systematic error

base track

We scan grains in emulsion and make

micro-tracks. Micro-tracks are visible tracks, but their angle is incorrect because they are influenced by shrink and distortion. So we make virtual tracks in base film called **base-track**. Base tracks are not so influenced by such things and their angles more resemble real tracks.

HTS reads grains and identifies a boundary between emulsion and base film, and we make base-tracks by micro-tracks. But now a boundary is recognized incorrectly because of difference of refractive index between emulsion and base film. It makes a systematic error of base-track angle.

Result

After performing some correction I made a plot of absolute angle vs a difference between absolute angle and HTS scanned angle, and fitted by linearly approximating. This slope of the straight line is just **k** that I showed.

incorrect base track is made because of wrong boundary Base track angle is systematically larger!

HTS scanned angle - Absolute track angle = $\mathbf{k} \times \text{Absolute track angle}$

If we can understand **k** we can correct this angle gap

for GRAINE . . .

I aim to reduce error of **k** within 1% because we want to reduce angle difference caused by it to 5mrad or less.

 $\tan \theta = -1.5$, 1.5 are not used for fitting because scan parameters are not fixed exactly for large angle yet and angle mean is not decided well. The slope **k** is 0.0523±0.0030

It means that if a particle enter emulsion as incident angle is $\tan \theta = 1.00$ HTS show its base track angle is about 1.05!

Error of the **k** I showed is only fitting error but it seems that the error is within 1%,