# Angular Observables Sensitive to NP in $\bar{B} \longrightarrow D^* l^- \bar{\nu}_l$

### Kilian Lieret

Ludwig Maximilian University of Munich

Advisers: Prof. Dr. Thomas Kuhr, Dr. Martin Jung, Prof. Dr. Gerhard Buchalla

November 15, 2018

2018 WPI-next mini-workshop "Hints for New Physics in Heavy Flavors" Nagoya University 15-17 November 2018





Bundesministerium für Bildung und Forschung

### Intro I

- Evidence for NP in  $\bar{B} \longrightarrow D^* \tau^- \bar{\nu}_{\tau}$  is mounting
  - $\implies$  Next question: What kind of NP?
  - $\implies$  New observables! (also good as cross checks)
- Here we consider the angular distribution of  $\overline{B} \longrightarrow D^*(\rightarrow D\pi) l^- \overline{\nu}_l$ . Example: Forward-backward asymmetry:

$$A_{ heta} := \left[\int_{-1}^{0} - \int_{0}^{1}
ight] \mathrm{d} \mathrm{cos}\, heta_{\ell} rac{\mathrm{d} \Gamma}{\mathrm{d} \mathrm{cos}\, heta_{\ell}}$$

Generalization: Observables  $\mathcal{O}_a$  built from *binned* measurements of  $\frac{d^3\Gamma}{d\chi \, d\theta_\ell \, d\theta_{D^*}}$ Similar to 12 observables constructed in 1602.03030<sup>1</sup> (using polarizations in addition to angles)

<sup>1</sup>Becirevic, Fajfer, Nisandzic, Tayduganov

### Intro II

However (so far): Only proofs of concepts, little experimental considerations!

#### Aim:

- + Characterize general form of 12 observables  $\mathcal{O}_a$
- + Introduce experimental error estimate
- + Minimize expected errors using d.o.f. in construction of  $\mathcal{O}_a$
- + Minimal number of bins required for construction of  $\mathcal{O}_a$
- + Optimal bin spacing for each  $\mathcal{O}_a$
- + Consider discriminatory power of observables on basis of operators corresponding to relevant NP mediators

## The Differential Cross Section

Slightly adapted<sup>2</sup> from  $1405.3719^3$ , we have<sup>4</sup> (with (pseudo)scalar, (axial) vector and tensor NP operators, no *CP* average)

$$\frac{\mathsf{d}^{3}\mathsf{\Gamma}}{\mathsf{d}\chi\,\mathsf{d}\theta_{\ell}\,\mathsf{d}\theta_{D^{*}}} = \sum_{a} \overline{W}_{a}\,B_{a}(\chi,\theta_{\ell},\theta_{D^{*}})$$

With 12 different

- Angle dependencies  $B_a(\chi, \theta_\ell, \theta_{D^*})$  (known) e.g.  $\cos(2\chi) \sin^3(\theta_{D^*}) \sin^3(\theta_\ell)$
- NP dependent coefficients
   W<sub>a</sub> (unknown)



Fig. 1: The decay angles  $\chi$ ,  $\theta_{\ell}$ ,  $\theta_{D^*}$ 

<sup>2</sup>In relation to the  $V_a$  from 1405.3719:  $W_1^0 := V_1^0 + V_2^0$ ,  $W_1^T := V_1^T + V_2^T$ ,  $W_2^0 := -2V_2^0$ ,  $W_2^T := -2V_2^T$ ; for the rest  $W_a := V_a$ . Furthermore  $\overline{W}_a := \int dq^2 W_a(q^2)$ . <sup>3</sup>Duraisamy, Sharma, Datta <sup>4</sup>the kinematic variable  $q^2$  will not be considered, i.e. the relevant quantities are integrated over  $q^2$ 

# The Idea (I)

How to extract the  $\overline{W}_a$ ? ' Linear algebra: Eq. (1): *N* linear equations with 12 unknowns  $\implies$  there are weights  $\omega_a(i)$  such that

$$\overline{W}_{a} = \sum_{i} \omega_{a}(i) \prod_{\substack{\text{unknown} \\ \text{NP-dependent} \\ \text{coefficient}}} \Gamma(i)$$

# The Idea (I)

How to extract the  $\overline{W}_a$ ? ' Linear algebra: Eq. (1): N linear equations with 12 unknowns  $\implies$  there are weights  $\omega_a(i)$  such that

$$\overline{W}_{a} = \sum_{i} \omega_{a}(i) \prod_{\substack{\text{unknown} \\ \text{NP-dependent} \\ \text{coefficient}}} \Gamma(i)$$

# The Idea (II)

#### The observables

$$\mathcal{O}_{a}: \underset{CS}{\overset{\Gamma}{\underset{i}\underset{weights}{\text{homod}}}} \mapsto \sum_{i} \omega_{a}(i) \Gamma(i) \text{ such that } \mathcal{O}_{a}(\Gamma_{\text{theo}}) = \overline{W}_{a}$$

#### Sensitivity

Expected uncertainty  $\sqrt{Var(\mathcal{O}_a)}$  as figure of merit  $\rightarrow$  the smaller the better (currently simplified setup with only statistical errors, studies of bin migration and flat systematics ongoing)

#### Degrees of freedom

If more bins than required

- $\implies$  DOFs in weights  $\omega_a(i)$
- $\Longrightarrow$  Use to improve sensitivity

#### Assumptions

- 1 "General bins": Arbitrary subsets  $U_i \subseteq [-\pi, \pi] \times [0, \pi] \times [0, \pi]$
- 2a "Product bins":  $U_{ijk} = U_i^{\chi} \times U_j^{\theta_\ell} \times U_k^{\theta_{D^*}}$
- 2b "Product weights": Product bins with weights in product form

Minimal number of bins  $(l = \tau)$ (under conservative assumptions for the binning)

| while number of bins in $\chi \times \theta_{\ell} \times \theta_{D^*}$ required to construct $\Theta_a$ |                                                                                                   |                     |                                                               |                                                                                           |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|--|--|
| $\mathcal{O}_{a}$                                                                                        | $\mathcal{O}_1^0$ , $\mathcal{O}_2^0$ , $\mathcal{O}_3^0$ , $\mathcal{O}_1^T$ , $\mathcal{O}_3^T$ | $\mathcal{O}_2^T$   | $\mathcal{O}_4^{\mathcal{T}}$ , $\mathcal{O}_5^{\mathcal{T}}$ | $\mathcal{O}_1^{0T}$ , $\mathcal{O}_2^{0T}$ , $\mathcal{O}_3^{0T}$ , $\mathcal{O}_4^{0T}$ |  |  |  |  |  |
| Minimal # bins                                                                                           | $1\times 3\times 3$                                                                               | $3\times 3\times 2$ | $3\times1\times2$                                             | $2 \times 2 \times 3$                                                                     |  |  |  |  |  |
|                                                                                                          | $1\times5\times2$                                                                                 |                     | $3\times 3\times 1$                                           | $2\times5\times1$                                                                         |  |  |  |  |  |
|                                                                                                          | 3 	imes 3 	imes 2                                                                                 |                     | $5\times1\times1$                                             | 3 	imes 2 	imes 2                                                                         |  |  |  |  |  |
|                                                                                                          |                                                                                                   |                     |                                                               | $3\times 3\times 1$                                                                       |  |  |  |  |  |
|                                                                                                          |                                                                                                   |                     |                                                               | 5	imes 2	imes 1                                                                           |  |  |  |  |  |

Min. number of bins in  $\chi imes heta_\ell imes heta_{D^*}$  required to construct  $\mathcal{O}_a$ 

All observables can be constructed for  $3\times3\times2$  binning.

## Performance Comparison $(I = \tau)$



### Finding optimal bin edges (example)

Example:  $3\times3\times2$  bins (prod bins, gen. weights) with edge points

$$\{-\pi, \chi_1, \chi_2, \pi\}_{\chi} \times \{\mathbf{0}, \theta_{\ell 1}, \theta_{\ell 2}, \pi\}_{\theta_{\ell}} \times \{\mathbf{0}, \underline{\Delta \theta_{D^*}}, \pi\}_{\theta_{D^*}}, \pi\}_{\theta_{D^*}}$$

- $\implies$  How does the optimal achievable sensitivity depend on  $\Delta \theta_{D^*}$ ?
- $\longrightarrow$  Generate sample of toy binnings (i.e. random values  $\chi_1, \chi_2, \theta_{\ell 1}, \theta_{\ell 2}, \Delta_{\theta_{D^*}}$ )



### What can we conclude about NP contributions? (I)

Suppose we can extract all  $\overline{W}_a$  from the angular distribution

Split up  $\overline{W}_a$ :

$$\overline{W}_{a} = \sum_{i=1}^{13} \overline{W}_{a}^{(i)} c_{i}(g_{A}, g_{V}, g_{S}, g_{P}, T_{L})$$

$$\underset{\text{coeff} \in \mathbb{R}}{\underset{\text{quadratic in NP coupl.}}{\underset{\text{quadratic in NP coupl.}}}$$

Want to extract  $c_i$  given  $\overline{W}_a$ :

- System of linear equations
- Sometimes  $\overline{W}_a \propto c_i \Longrightarrow$  easy!
- Generally hard ⇒ additional assumptions for NP coefficients

Effective Lagrangian:

$$\begin{aligned} \mathcal{H}_{\text{eff}} &= \frac{4G_F V_{cb}}{\sqrt{2}} \Bigg[ (1 + \mathcal{C}_{V_L} [\bar{c}\gamma_\mu P_L b] [\bar{l}\gamma^\mu P_L \nu_l] + \mathcal{C}_{V_R} [\bar{c}\gamma^\mu P_R b] [\bar{l}\gamma_\mu P_L \nu_l] + \\ &+ \mathcal{C}_{S_L} [\bar{c}P_L b] [\bar{l}P_L \nu_l] + \mathcal{C}_{S_R} [\bar{c}P_R b] [\bar{l}P_L \nu_l] + T_L [\bar{c}\sigma^{\mu\nu} P_L b] [\bar{l}\sigma_{\mu\nu} P_L \nu_l] \Bigg], \end{aligned}$$

With  $g_{V,A} = C_{V_R} \pm C_{V_L}$ ,  $g_{S,P} = C_{S_R} \pm C_{S_L}$ ,  $T_L = C_T$ ,  $P_{L/R} := (1 \mp \gamma_5)/2$ ,  $\sigma_{\mu\nu} := i(\gamma_{\mu}\gamma_{\nu} - \gamma_{\nu}\gamma_{\mu})/2$ .

### What can we conclude about NP contributions? (I)

Suppose we can extract all  $\overline{W}_a$  from the angular distribution

Split up  $\overline{W}_a$ :

$$\overline{W}_{a} = \sum_{i=1}^{13} \overline{W}_{a}^{(i)} c_{i}(g_{A}, g_{V}, g_{S}, g_{P}, T_{L})$$

$$\underset{\text{coeff} \in \mathbb{R}}{\underset{\text{quadratic in NP coupl.}}{\underset{\text{quadratic in NP coupl.}}}$$

Want to extract  $c_i$  given  $\overline{W}_a$ :

- System of linear equations
- Sometimes  $\overline{W}_a \propto c_i \Longrightarrow easy!$
- Generally hard ⇒ additional assumptions for NP coefficients

Effective Lagrangian:

$$\begin{split} \mathcal{H}_{\text{eff}} &= \frac{4G_F V_{cb}}{\sqrt{2}} \Bigg[ (1 + \mathcal{C}_{V_L} [\bar{c}\gamma_\mu P_L b] [\bar{l}\gamma^\mu P_L \nu_l] + \mathcal{C}_{V_R} [\bar{c}\gamma^\mu P_R b] [\bar{l}\gamma_\mu P_L \nu_l] + \\ &+ \mathcal{C}_{S_L} [\bar{c}P_L b] [\bar{l}P_L \nu_l] + \mathcal{C}_{S_R} [\bar{c}P_R b] [\bar{l}P_L \nu_l] + T_L [\bar{c}\sigma^{\mu\nu} P_L b] [\bar{l}\sigma_{\mu\nu} P_L \nu_l] \Bigg] \end{split}$$

With  $g_{V,A} = C_{V_R} \pm C_{V_L}$ ,  $g_{S,P} = C_{S_R} \pm C_{S_L}$ ,  $T_L = C_T$ ,  $P_{L/R} := (1 \mp \gamma_5)/2$ ,  $\sigma_{\mu\nu} := i(\gamma_{\mu}\gamma_{\nu} - \gamma_{\nu}\gamma_{\mu})/2$ .

### What can we conclude about NP contributions? (II)

| Ci                     | In terms of coupling const                                     | ants                              |
|------------------------|----------------------------------------------------------------|-----------------------------------|
| <b>c</b> 1             | $ 1-g_A ^2$                                                    |                                   |
| <b>C</b> 2             | $ g_V + 1 ^2$                                                  |                                   |
| <b>C</b> 3             | $ g_P ^2$                                                      |                                   |
| <b>C</b> 4             | $ T_L ^2$                                                      |                                   |
| <b>C</b> 5             | $Re((1-{	extsf{g}}_{	extsf{A}})({	extsf{g}}_{	extsf{V}}^*+1))$ |                                   |
| <i>c</i> <sub>6</sub>  | $Re((1 - \underline{g}_A)\underline{g}_P^*)$                   |                                   |
| <b>C</b> 7             | $Re((1-g_A)T_L^*)$                                             |                                   |
| <b>C</b> 8             | $Re((g_V+1)T_L^*)$                                             |                                   |
| <b>C</b> 9             | $\operatorname{Re}(g_P T_L^*)$                                 |                                   |
| $c_{10}$               | $Im((1-\underline{g_A})(\underline{g_V^*}+1))$                 | )                                 |
| <b>c</b> <sub>11</sub> | $Im((1 - g_A)T_L^*)$                                           |                                   |
| <i>c</i> <sub>12</sub> | $Im((\underline{g}_V+1)\underline{g}_P^*)$                     | <pre>drop out in CP average</pre> |
| <i>c</i> <sub>13</sub> | $\operatorname{Im}(g_P T_L^*)$                                 | J                                 |

Fig. 2:  $c_i \longrightarrow$  coupling constants

### What can we conclude about NP contributions? (III)

Consider base of operators with  ${}^{\rm 5}$ 

- Renormalizable couplings relevant for  $\bar{B} \longrightarrow D^* l^- \bar{\nu}_l$
- Dimension 4 or 6
- $\blacksquare \ \ \text{Non-flavor universal couplings} \Longrightarrow \mathsf{right-handed vector current not considered}$

Denote operators by transformation under  $SU(3)_C \times SU(2)_W \times U(1)_Y$ :



<sup>5</sup>source: Freytsis, Ligeti, Ruderman 1506.08896

### What can we conclude about NP contributions? (IV)

Considering base of operators corresponding to relevant mediators

|                | SM | All NP                              | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $({f 1},{f 2})_{1/2}$ ,<br>$({f \bar 3},{f 2})_{5/6}$ | <b>(3,1)</b> <sub>2/3</sub>                                           | <b>(3,2)</b> <sub>7/6</sub>                   | $(\bar{3},1)_{1/3}$                                                   |
|----------------|----|-------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------|
| $W_1^0$        |    | $c_1, c_3, c_4, c_6, c_7$           | <i>c</i> 1                                              | <i>c</i> <sub>3</sub> , <i>c</i> <sub>6</sub>         | <i>c</i> <sub>1</sub> , <i>c</i> <sub>3</sub> , <i>c</i> <sub>6</sub> | <i>c</i> <sub>3</sub> , <i>c</i> <sub>6</sub> | <i>c</i> <sub>1</sub> , <i>c</i> <sub>3</sub> , <i>c</i> <sub>6</sub> |
| $W_2^0$        |    | $c_1, c_4$                          | <i>c</i> 1                                              |                                                       | <i>c</i> 1                                                            | <b>c</b> 3                                    | $c_1, c_3$                                                            |
| $W_{3}^{0}$    |    | $c_1, c_6, c_7, c_9$                | <i>c</i> 1                                              | <i>с</i> 6                                            | $c_1, c_6$                                                            | <i>c</i> <sub>6</sub> , <i>c</i> <sub>3</sub> | $c_1, c_6, c_3$                                                       |
| $W_1^T$        |    | $c_1, c_2, c_4, c_7, c_8$           | <b>c</b> 1                                              |                                                       | c1                                                                    | <i>c</i> <sub>3</sub> , <i>c</i> <sub>6</sub> | <i>c</i> <sub>1</sub> , <i>c</i> <sub>3</sub> , <i>c</i> <sub>6</sub> |
| $W_2^T$        |    | $c_1, c_2, c_4$                     | <i>c</i> 1                                              |                                                       | <i>c</i> 1                                                            | <b>с</b> 3                                    | $c_1, c_3$                                                            |
| $W_3^T$        |    | $c_4, c_5, c_7, c_8$                | <i>c</i> 1                                              |                                                       | <i>c</i> 1                                                            | <i>c</i> <sub>3</sub> , <i>c</i> <sub>6</sub> | $c_3, c_1, c_6$                                                       |
| $W_4^T$        |    | $c_1, c_2, c_4$                     | <i>c</i> 1                                              |                                                       | c1                                                                    | <b>C</b> 3                                    | $c_1, c_3$                                                            |
| $(W_5^T)$      |    | <i>c</i> <sub>10</sub>              |                                                         |                                                       |                                                                       |                                               |                                                                       |
| $W_{1}^{0T}$   |    | $c_1, c_4$                          | <i>c</i> 1                                              |                                                       | <i>c</i> 1                                                            | <b>c</b> 3                                    | $c_1, c_3$                                                            |
| $W_{2}^{0T}$   |    | $c_1, c_4, c_5, c_6, c_7, c_8, c_9$ | <i>c</i> 1                                              | <b>с</b> 6                                            | <i>c</i> <sub>1</sub> , <i>c</i> <sub>6</sub>                         | <i>c</i> <sub>3</sub> , <i>c</i> <sub>6</sub> | $c_1, c_3, c_6$                                                       |
| $(W_{3}^{0T})$ |    | $c_{10}, c_{11}, c_{12}, c_{13}$    |                                                         | <i>c</i> <sub>12</sub>                                | <i>c</i> <sub>12</sub>                                                | <i>c</i> <sub>11</sub>                        | <i>c</i> <sub>11</sub>                                                |
| $(W_4^{0T})$   |    | <i>c</i> <sub>10</sub>              |                                                         |                                                       |                                                                       |                                               |                                                                       |

Colors: $W_a = 0$  $W_a c_i$ -indep. $W_a \propto c_i$  $(W_a - \text{const.}) \propto c_i$ Multiple  $c_i$ Bold:Contributes to fully integrated CS;Parenthesized:Drops out in CP average

Fig. 3: All operators with dim. 4 or 6 and renormalizable non-flavor universal couplings

relevant for  $\bar{B} \longrightarrow D^* l^- \bar{\nu}_l$  (cf. 1506.08896) applied to observables for  $l = \tau$ .

### Summary

$$\mathcal{O}_{\mathfrak{a}} \colon \underset{\mathsf{CS}}{\overset{\mathsf{\Gamma}}{\underset{i} \text{measured}}} \longmapsto \sum_{i} \underset{\mathsf{weights}}{\overset{\omega_{\mathfrak{a}}(i)}{\underset{j}{\mathsf{r}}} \Gamma(i)} \text{ such that } \mathcal{O}_{\mathfrak{a}}(\mathsf{\Gamma}_{\mathsf{theo}}) = \overline{W}_{\mathfrak{a}} \underset{\underset{\mathsf{CS}}{\overset{\mathsf{unknown}}{\underset{j}{\mathsf{NP-dependent}}}}{\overset{\mathsf{unknown}}{\underset{j}{\mathsf{r}}}}$$

### Some key points

- Can construct some of the observables even for very coarse binnings (especially relevant for the experimentally challenging  $I = \tau$  case)
- The same strategies have been applied to *l* = *e*, μ (both experimentally and theoretically easier, but less suspicious of NP so far)
- Can also consider the same observables with q<sup>2</sup> dependency (but will need a new figure of merit to optimize against and discriminating between NP models will be more complex)
- To cancel systematics: Consider ratios of observables or use a normalization mode

### Summary

- Some simple expression of weights to extract (combinations of the) W<sub>a</sub> (on a "proof of concept" base)
- Studied the NP dependency by considering the  $q^2$  distribution of  $W_a(q^2)$ , considering only one of  $g_A$ ,  $g_V$ ,  $g_S$ ,  $g_P$ ,  $T_L$  to be non-vanishing

#### New results

- **Characterized** the construction of the observables *O*<sub>a</sub> for several assumptions on binning and weights
- Determined the min. number of bins to construct each  $\mathcal{O}_a$
- Introduced a figure of merit for the obtainable sensitivity
- Used degrees of freedom in the weights to optimize sensitivity
- Studied the influence of bin widths on the sensitivity
- Studied the **NP dependency** of *W*<sub>a</sub> based on a base of operators *corresponding to relevant mediators* (better physical motivation)

<sup>6</sup>Becirevic, Fajfer, Nisandzic, Tayduganov 1602.03030 (ref. closest to our work to best knowledge)

### **Backup Slides**

Backup slides overview

- General bins
- The angular functions B<sub>a</sub>
- Correlation
- Plots  $3 \times 3 \times 2$  edges
- Plots  $3 \times 3 \times 3$  edges





#### Fig. 4: 12 bins, $3 \times 3 \times 3$ cubes (equidistant)



#### Fig. 4: 12 bins, $5 \times 5 \times 5$ cubes



#### Fig. 4: 27 bins, $5 \times 5 \times 5$ cubes

## The angular functions $B_a$ (I)

$$B_1^T = \sin^3(\theta_{D^*})\sin(\theta_{\ell})$$

$$B_1^0 = \sin(\theta_{D^*})\cos^2(\theta_{D^*})\sin(\theta_{\ell})$$

$$B_2^0 = \sin(\theta_{D^*})\cos^2(\theta_{D^*})\sin^3(\theta_{\ell})$$

$$B_3^0 = \sin(\theta_{D^*})\cos^2(\theta_{D^*})\sin(\theta_{\ell})\cos(\theta_{\ell})$$

$$B_4^T = \cos(2\chi)\sin^3(\theta_{D^*})\sin^3(\theta_{\ell})$$

$$B_5^T = \sin(2\chi)\sin^3(\theta_{D^*})\sin^3(\theta_{\ell})$$

$$B_1^{0T} = \cos(\chi) \sin(\theta_{D^*}) \sin(2\theta_{D^*}) \sin(\theta_{\ell}) \sin(2\theta_{\ell})$$
  

$$B_2^{0T} = \cos(\chi) \sin(\theta_{D^*}) \sin(2\theta_{D^*}) \sin^2(\theta_{\ell})$$
  

$$B_3^{0T} = \sin(\chi) \sin(\theta_{D^*}) \sin(2\theta_{D^*}) \sin^2(\theta_{\ell})$$
  

$$B_4^{0T} = \sin(\chi) \sin(\theta_{D^*}) \sin(2\theta_{D^*}) \sin(\theta_{\ell}) \sin(2\theta_{\ell})$$

Table 1: The functions  $B_a(\chi, \theta_\ell, \theta_{D^*})$ 

# The angular functions $B_a$ (II)



Fig. 5: Combinations of the angle functions.

$$\begin{split} f_1(\chi) &:= 1, \\ f_2(\chi) &:= \sin(\chi), \\ f_3(\chi) &:= \cos(\chi), \\ f_4(\chi) &:= \sin(2\chi), \\ f_5(\chi) &:= \cos(2\chi), \end{split}$$

$$g_1(\theta_\ell) := \sin(\theta_l),$$

$$g_2(\theta_\ell) := \sin^2(\theta_l),$$

$$g_3(\theta_\ell) := \sin^3(\theta_l),$$

$$g_4(\theta_\ell) := \sin(\theta_l)\cos(\theta_l),$$

$$g_5(\theta_\ell) := \sin(\theta_l)\sin(2\theta_l),$$

$$h_1(\theta_{D^*}) := \sin^3(\theta_{D^*}),$$

$$h_2(\theta_{D^*}) := \sin(\theta_{D^*})\sin(2\theta_{D^*}),$$
  

$$h_3(\theta_{D^*}) := \sin(\theta_{D^*})\cos^2(\theta_{D^*}).$$

### Correlation



Fig. 6: Correlation of angle functions resp. observables

$$\{-\pi, \chi_1, \chi_2, \pi\}_{\chi} imes \{\mathbf{0}, \theta_{\ell 1}, \theta_{\ell 2}, \pi\}_{ heta_{\ell}} imes \{\mathbf{0}, \Delta \theta_{\mathsf{D}^*}, \pi\}_{ heta_{D^*}}$$



$$\{-\pi, \chi_1, \chi_2, \pi\}_{\chi} imes \{\mathbf{0}, heta_{\ell 1}, heta_{\ell 2}, \pi\}_{ heta_{\ell}} imes \{\mathbf{0}, \mathbf{\Delta} heta_{\mathsf{D}^*}, \pi\}_{ heta_{D^*}}$$



 $\{-\pi, \chi_1, \chi_2, \pi\}_{\chi} \times \{\mathbf{0}, \theta_{\ell 1}, \theta_{\ell 2}, \pi\}_{\theta_{\ell}} \times \{\mathbf{0}, \Delta \theta_{D^*}, \pi\}_{\theta_{D^*}}$ 



 $\{-\pi, \chi_1, \chi_2, \pi\}_{\chi} \times \{\mathbf{0}, \theta_{\ell 1}, \theta_{\ell 2}, \pi\}_{\theta_{\ell}} \times \{\mathbf{0}, \Delta \theta_{D^*}, \pi\}_{\theta_{D^*}}$ 



 $\{-\pi,\chi_1,\chi_2,\pi\}_{\chi}\times\{\mathbf{0},\theta_{\ell 1},\theta_{\ell 2},\pi\}_{\theta_{\ell}}\times\{\mathbf{0},\theta_{D^*1},\theta_{D^*2},\pi\}_{\theta_{D^*}}$ 



 $\{-\pi, \chi_1, \chi_2, \pi\}_{\chi} \times \{\mathbf{0}, \theta_{\ell 1}, \theta_{\ell 2}, \pi\}_{\theta_{\ell}} \times \{\mathbf{0}, \theta_{D^{*}1}, \theta_{D^{*}2}, \pi\}_{\theta_{D^{*}}}$ 



 $\{-\pi, \chi_1, \chi_2, \pi\}_{\chi} \times \{\mathbf{0}, \theta_{\ell 1}, \theta_{\ell 2}, \pi\}_{\theta_{\ell}} \times \{\mathbf{0}, \theta_{D^*1}, \theta_{D^*2}, \pi\}_{\theta_{D^*}}$ 



 $\{-\pi, \chi_1, \chi_2, \pi\}_{\chi} \times \{\mathbf{0}, \theta_{\ell 1}, \theta_{\ell 2}, \pi\}_{\theta_{\ell}} \times \{\mathbf{0}, \theta_{D^*1}, \theta_{D^*2}, \pi\}_{\theta_{D^*}}$ 



### Backup slides

Backup slides overview

- General bins
- The angular functions B<sub>a</sub>
- Correlation
- Plots  $3 \times 3 \times 2$  edges
- Plots  $3 \times 3 \times 3$  edges