Neutron Experiments at J-PARC

Masaaki Kitaguchi

Center for experimental studies, KMI, Nagoya University Laboratory for Particle Properties (Φ-Lab.)

Material and Life science Experimental Facility

-

Neutron Experiments at J-PARC, KMI2019, 18 Jan. 2019, Masaaki Kitaguchi, Nagoya University

K

IM

KM

Neutron Experiments at J-PARC, KMI2019, 18 Jan. 2019, Masaaki Kitaguchi, Nagoya University

Κ IM KM

page 3

Neutron Lifetime

Search for unknown force

T-violation in compound nuclei

pade

Neutron interferometer

Neutron lifetime

Neutron Experiments at J-PARC, KMI2019, 18 Jan. 2019, Masaaki Kitaguchi, Nagoya University

page 5

Neutron lifetime

Neutron lifetime is an key parameter for CKM unitarity check Big Bang Nucleosynthesis

Discrepancy between methods may suggest new physics?

Neutron Experiments at J-PARC, KMI2019, 18 Jan. 2019, Masaaki Kitaguchi, Nagoya University

page

Principle of measurement in J-PARC

In-beam measurement with pulsed neutrons Direct measurement of decay-electrons $(0 \sim 782 \text{keV})$ (Kossakowski,1989)

Event ID by energy deposit, track topology, and so on.

page

No External Flux monitor, No wall loss

Spin Flip Chopper and Time Projection Chamber

page

8

Neutron lifetime

We have already taken data corresponding to 0.5% statistics. Analysis is ongoing.

Neutron Experiments at J-PARC, KMI2019, 18 Jan. 2019, Masaaki Kitaguchi, Nagoya University

page

9

Neutron lifetime upgrade plan

Upgrades are ongoing.

Systematic uncertainty will be smaller with more intelligent cuts. ³He injection will be 0.11%. Beam optics upgrade (enlarging SFC mirror) makes beam intensity by 5 times.

Search for unknown force

Intermediate force search by neutron scattering

non-Newtonian gravity
$$V(r) = -G_N \frac{m_1 m_2}{r} \left(1 + \alpha \cdot e^{-\frac{r}{\lambda}}\right)$$

Newtonian $+ \alpha$ in **nm** range can be searched by neutron scattering.

KM

page 12

Neutron scattering apparatus

Neutron scattering result and plan

Upgrades are ongoing.

New type of target (nano particle?) will be used for more sensitivity. Other beamline with large area detector will help us for more neutrons.

Highlighted in APS

C. C. Haddock, *et al.*, Phys. Rev. D97, 062002 (2018).

T-violation in compound nuclei

Symmetry violation in compound nuclei

Pospelov Ritz, Ann Phys 318 (05) 119

Symmetry violation in compound nuclei

P-violation is enhanced in the interference between s-wave and p-wave of compound nuclei.

Neutron Experiments at J-PARC, KMI2019, 18 Jan. 2019, Masaaki Kitaguchi, Nagoya University

page

Symmetry violation in Compound nuclei

KMI2019, 18 Jan. 2019, Masaaki Kitaguchi, Nagoya University

page 18

KM

Symmetry violation in Compound nuclei

The interference between s-wave and p-wave results in the interference between partial waves with different channel spin.

Gudkov, Phys. Rep. 212 (1992) 77.

$$P: |lsI\rangle \to (-1)^l |lsI\rangle$$
$$T: |lsI\rangle \to (-1)^{i\pi S_y} K |lsI\rangle$$

$$|((Is)S,l)J\rangle = \sum_{j} \langle (I,(sl)j)J|((Is)S,l)J\rangle |(I,(sl)j)J\rangle$$

$$= \sum_{j} (-1)^{l+s+I+J} \sqrt{(2j+1)(2S+1)} \left\{ \begin{array}{cc} I & s & l \\ J & S & j \end{array} \right\} |(I,(sl)j)J\rangle$$

Compound State

$$x = \sqrt{\frac{\Gamma_p^n(j=1/2)}{\Gamma_p^n}} \qquad y = \sqrt{\frac{\Gamma_p^n(j=3/2)}{\Gamma_p^n}} \qquad x_S = \sqrt{\frac{\Gamma_p^n(S=I-1/2)}{\Gamma_p^n}} \qquad y_S = \sqrt{\frac{\Gamma_p^n(S=I+1/2)}{\Gamma_p^n}}$$

 $z_{j} = \left\{ \begin{array}{cc} x & (j = 1/2) \\ y & (j = 3/2) \end{array} \right\}, \quad \tilde{z}_{S} = \left\{ \begin{array}{cc} x_{S} & (S = I - 1/2) \\ y_{S} & (S = I + 1/2) \end{array} \right\} \quad \tilde{z}_{S} = \sum_{j} (-1)^{l+I+j+S} \sqrt{(2j+1)(2S+1)} \left\{ \begin{array}{cc} l & s & j \\ I & J & S \end{array} \right\} z_{j}$

Neutron Experiments at J-PARC, KMI2019, 18 Jan. 2019, Masaaki Kitaguchi, Nagoya University

entrance

channel

 Γ_n^s ; p-wave

representation changes

 $\sqrt{\Gamma_n^{S=I-\frac{1}{2}}}$

s-wave

 $\Gamma_{n}^{S=I+\frac{1}{2}}$

Enhancement of symmetry violation

The interference between s-wave and p-wave results in the interference between partial waves with different channel spin.

Gudkov, Phys. Rep. 212 (1992) 77.

$$\Delta \sigma_{\rm T} = \kappa(J) \frac{W_{\rm T}}{W} \Delta \sigma_{\rm P}$$
T-violation P-violating matrix element

Angular momentum factor

$$\kappa(J) = \begin{cases} (-1)^{2I} \left(1 + \frac{1}{2} \sqrt{\frac{2I-1}{I+1}} \frac{y}{x} \right) & (J = I - \frac{1}{2}) \\ (-1)^{2I+1} \frac{I}{I+1} \left(1 - \frac{1}{2} \sqrt{\frac{2I+3}{I}} \frac{y}{x} \right) & (J = I + \frac{1}{2}) \end{cases}$$

 $x = \sqrt{\frac{\Gamma_n^{p,j=\frac{1}{2}}}{\Gamma_n^p}} \quad y = \sqrt{\frac{\Gamma_n^{p,j=\frac{3}{2}}}{\Gamma_n^p}} \quad x^2 + y^2 = 1 \quad \begin{array}{l} x = \cos \phi \\ y = \sin \phi \end{array} \quad \begin{array}{l} \text{Unknown parameter} \end{array}$

Experimental setup for T-violation search

Neutron Experiments at J-PARC, KMI2019, 18 Jan. 2019, Masaaki Kitaguchi, Nagoya University

page 21

ermination of ϕ

(n, γ) reaction (for unpolarized case)

Flambaum, Nucl. Phys. A435 (1985) 352

$$\begin{aligned} \frac{d\sigma}{d\Omega} &= \frac{1}{2} \left(a_0 + \underline{a_1} k_n \cdot k_\gamma + \underline{a_3} \left((k_n \cdot k_p)^2 - \frac{1}{3} \right) \right) \\ a_0 &= \sum_{J_s} |V_1(J_s)|^2 + \sum_{J_{s,j}} |V_2(J_pj)|^2 \\ a_1 &= 2 \operatorname{Re} \sum_{J_s, J_p, j} V_1(J_s) V_2^*(J_pj) P(J_s J_p \frac{1}{2} j 1 1 F) \\ a_3 &= \operatorname{Re} \sum_{J_{s,j}, J'_p, j'} V_2(J_pj) V_2^*(J'_pj') P(J_p J'_p j j' 2 1 F) 3\sqrt{10} \begin{cases} 2 & 1 & 1 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 2 & j & j' \end{cases} \\ V_1 &= \frac{1}{2k_s} \sqrt{\frac{E_s}{E}} \frac{\sqrt{g\Gamma_s^n \Gamma_\gamma}}{\sum E - E_s + i\Gamma_s/2} \\ V_2(j) &= \frac{1}{2k_p} \sqrt{\frac{E_p}{E}} \sqrt{\frac{\Gamma_{pj}^n}{\Gamma_p^n}} \frac{\sqrt{g\Gamma_p^n \Gamma_\gamma}}{\sum E - E_p + i\Gamma_p/2} \end{cases} \\ V_2(j) &= V_2 = V_2 \operatorname{COS} \phi \\ V_2(j) &= (-1)^{J+J'+j'+I+F} \frac{3}{2} \sqrt{(2J+1)(2J'+1)(2j'+1)} \begin{cases} j & j' & j' \\ I & J' & j' \end{cases} \begin{cases} k & 1 & 1 \\ k & J & J' \end{cases} \end{aligned}$$

Measurement of enhancement factor

Targets : ^{nat}La 40mm x 40mm x 1mm

T. Okudaira et. al., Phys. Rev. C97 (2018) 034622.

Measurement of enhancement factor

T. Okudaira et. al., Phys. Rev. C97 (2018) 034622.

Feasibility of T-violation experiment

T-violation is also enhanced!

$$\Delta \sigma_{\rm CP} = \kappa(J) \frac{W_{\rm T}}{W} \Delta \sigma_{\rm P}$$

T-violation

P-violation g_{CP}/g_P

Estimation in effective field theory

Y.-H.Song et al., Phys. Rev. C83 (2011) 065503

$$\frac{W_{\mathrm{T}}}{W} = \frac{\Delta \sigma \mathcal{F} \mathcal{P}}{\Delta \sigma \mathcal{P}} \simeq (-0.47) \left(\frac{\bar{g}_{\pi}^{(0)}}{h_{\pi}^{1}} + (0.26) \frac{\bar{g}_{\pi}^{(1)}}{h_{\pi}^{1}} \right)$$

 $\kappa(J) \sim 1$

Discovery potential

 $< 1.0 \times 10^{-4}$ barn $\Delta\sigma_{
m T}$

from upper limit of nEDM $|d_n| < 2.9 \times 10^{-26} \,\mathrm{e\,cm}$

 $\bar{g}_{\pi}^{(0)} < 2.5 \times 10^{-10}$

from upper limit of Hg EDM

 $|d_{\rm Hg}| < 3.1 \times 10^{-29} {\rm e} \cdot {\rm cm}$

 $\bar{g}_{\pi}^{(1)} < 0.5 \times 10^{-11}$

from NPDGamma

 $h_{\pi}^1 \sim 3 \times 10^{-7}$

Feasibility of T-violation experiment

Neutron Polarizer

Target Polarizer

Other target candidates

eV neutron detector

page 27

Other topics

を測定する点は同じである。ここで、Eは中性子にかける電場のと EDM の相互作用時間、 d_n は中性子の EDM である。この式 の実験感度 $\sigma(d_n)$ は次の式で表される。

の実験感度 $\sigma(d_n)$ は次の式で表される。 Pendellösung interference fringes

with pulsed neutrons was observed clearly to be basis of **crystal-EDM technique**.

Dynamical diffraction inside crystal

S. Itoh *et. al.*, Nucl. Instr. Meth A908, 学会時時間当たりの中性子数、工作進定時間である。それぞれ 度を以下の表に示した。

Nuclear emulsion detector with ¹⁰B thin layer

can detect neutrons with position resolution 飛行法 結晶回折法 less than 100 nm. N. Naganawa *et. al.*, Eur. Phys. J. C (2018) 78:959まずは結晶内電場を測定 $\sim 10^{-3}$ Neutron resonance in gravitational potential $\sim 10^4$

Neutron resonance in gravitational potential 実験感ይ $o_{(\alpha_n)}$ 10⁻²⁰/ $\sqrt{\text{Day}}$ ~ $10^{-25}/\sqrt{\text{Day}}$

Neutron interferometer for pulsed neutrons

is developing for dark energy search or gra教 experiments の実験感度を表した図

現在の中性子EDMの上限値は蓄積法によって決められて

Summary

Neutron lifetime measurement with new in-beam method are continuing on BL05. It will be upgraded to 0.1% precision.

Neutron scattering made a new limit of Yukawa-type unknown force, non-Newtonian gravity.

Discrete symmetry violation is enhanced in Compound States induced by Epithermal Neutron.

T-violation in compound nuclei has a discovery potential of new physics beyond the standard model.

Many kind of neutron devices are developed for various experiments.

