

(Dark matter Wimp search with liquid xenoN)

Direct Dark Matter Search

Masaki Yamashita, Kavli IPMU, The University of Tokyo

Kavli IPMU, The University of Tokyo Masaki Yamashita

Dark Matter

Composition of the Universe

- Dark Energy/Matter 95% unknown
 - Dark Energy (68%), Dar Matter (27%)
- What is Dark Matter?
 - WIMP, Axion, Primordial Black Hole …
 - Weakly Interacting Massive Particle (WIMP)
 - WIMP appears in many beyond the standard models, such as SUSY. • WIMP is not excluded by the experiments but is detectable near future. 0.001 0.0001 • WIMP is a relic from the simple mechanism of the thermal freeze-out process. 10-6 10-7 •e.g., successful scenario CMB, Big Bang Nucleosynthesis (H, He,..) motivated particle theory, particle experiment, and cosmology δ¹⁰ 10-10 => WIMP miracle

Masaki Yamashita, Kavli IPMU, The University of Tokyo

Direct Dark Matter Search

- WIMP mean velocity is about 230 km/s at the location of our solar system.
- WIMPs interact with ordinary matter through elastic scattering on nuclei.
- Typical nuclear recoil energies are of order of 1 to 100 keV.

Direct Dark Matter Search

Masaki Yamashita

What we get from Direct Detection? once we detect dark matter…

- DM particles are traveling around us.
- Mass of DM particles
- DM-nucleus scattering cross-section
- •It will rely on ρ_{dm} (= 0.3 GeV/cm³), Velocity distribution (= > Maxwellian, DM stream?)

J. Aalbers *et al* JCAP11(2016)017

Kamioka Observatory, ICRR, The University of Tokyo, Masaki Yamashita

Complementarity of targets

J. Newstead et al, PRD 88, 076011 (2013)

Dark Matter Direct Detection

BERKELEY LAB History of WIMP searches

Masaki Yamashita, Kavli IPMU, The University of Tokyo

-Semiconductor (Ge, Si)

-Cryogenics (Ge, Si) - Photon + Charge

-Liquid Noble Gas (Xe,Ar..) -Scintillation + Charge

Dark Matter Direct Detection

History of WIMP searches

Masaki Yamashita, Kavli IPMU, The University of Tokyo

-Semiconductor (Ge, Si)

-Cryogenics (Ge, Si) - Photon + Charge

-Liquid Noble Gas (Xe,Ar..) -Scintillation + Charge

Masaki Yamashita, Kavli IPMU, The University of Tokyo

-Semiconductor (Ge, Si)

-Cryogenics (Ge, Si) - Photon + Charge

-Liquid Noble Gas (Xe,Ar..) -Scintillation + Charge

Gas-Liquid Two-phase Xe Time Projection Chamber

- Signal from Scintillation Light(S1) and Charge (S2)
 - 3D Position Reconstruction: x-y (S2) and z (drift time)
 - · Xe: Z(=54), Powerful Self-shielding of external radiations such as gamma rays.
 - · Identify multiple sites events: Compton Scattering, Neutron
- · Particle identification: the nuclear recoil signal (WIMP) from electronic recoil (γ , β rays) with S2/S1 ratio (> 99%)

Masaki Yamashita, K: S2: Ionization (Proportional Light)

History of XENON XENON10 XENON100 XENON1T

2005-2007	2008-2016	2012-2018	2020-	2027-
15 kg	161 kg	3200 kg	8400 kg	50 tonnes
15 cm	30 cm	96 cm	150 cm	260 cm
~10 ⁻⁴³ cm ²	~10 ⁻⁴⁵ cm ²	~10 ⁻⁴⁷ cm ²	~10 ⁻⁴⁸ cm ²	~10 ⁻⁴⁹ cm ²

Masaki Yamasınıa, navnı mivio, ine oniversity or rokyo

XENONnT

DARWIN

DARWIN TPC

Masaki Yamashita, IPMU, The University of Tokyo

DARWIN Detector

top sensor array (955 PMTs, electronics, copper + PTFE panels)

> top electrode frames (Titanium)

> > TPC reflector (PTFE, 24 panels)

bottom electrode frames (Titanium)

bottom sensor array

pressure vessel

•Total: 50-tonne LXe 40-tonne Fiducial volume (X10 XENONnT)

•Total: ~2000 3" PMTs (Top + Bottom) PTFE reflector

DARWIN (XLZD) Sensitivity

 10^{3}

Masaki Yamashita, IPMU, The University of Tokyo

•X 10 higher sensitivity than goal of current ongoing experiments(XENONnT, LZ, PandaX-4

•Exploring WIMP cross sections into the 'neutrino fog' (coherent elastic neutrinonucleus scattering).

• Ultimate Direct Detection detector

Realization of DARWIN

XENONnT Background

arXiv:2303.14729v1	Nominal		Best Fit	
	RO		OI	Signal-like
ER		134	135^{+12}_{-11}	$0.86^{+0.08}_{-0.07}$
Neutrons		$1.1^{+0.6}_{-0.5}$	1.1 ± 0.4	0.42 ± 0.17
$CE\nu NS$	0.2	3 ± 0.06	0.23 ± 0.06	0.022 ± 0.011
AC	4	4.3 ± 0.2	4.32 ± 0.15	0.366 ± 0.013
Surface		14 ± 3	12^{+0}_{-4}	$0.35^{+0.01}_{-0.11}$
Total Background		154	152 ± 12	2.0 ± 0.2
WIMP		-	2.6	1.3
Observed		-	152	3

Masaki Yamashita, Kavli IPMU, The University of Tokyo

Realization of DARWIN (XENONnT Technology)

XENONnT 8.5 tonne

222 Rn distillation

• Reduce Rn (²¹⁴Pb) from pipes, cables, cryogenic system

BG (ER)

Masaki Yamashita, Kavli IPMU, The University of Tokyo

LXC purification

- Faster xenon cleaning
- 2L/min LXe

†Sensitivity

nVeto

- Inner region of existing muon veto
- optically separate
- Gd in the water tank
- 0.5 % Gd₂(SO₄)₃

BG (NR)

DARWIN: R&D Photosensor

R13111 (XMASS) Lowest radioactivity

R11410 (LZ, XENONnT, PandaX)

Low Dark Current SiPM (See Kobayashi talk)

Masaki Yamashita, IPMU, The University of Tokyo

Hybrid sensors e.g. Abalone

Liquid hole multiplier

DARWIN: R&D Detector

Full height and diameter test facility for DARWIN Baudis et al. JINST 16 P08052(2021)

High voltage, Purity …

S

Masaki Yamashita, IPMU, The University of Tokyo

2.6 m

Electrode and other detector components

XENON-LZ-DARWIN (XLZD) Consortium

Liquid Xenon Time Projection Chambers => A World leading Technology -> XLZD Consortium

- 2021/4/26,27 XENON/DARWIN, LUX-ZEPLIN meeting https://indico.cern.ch/event/1028794/ **MOU**: XENON, DARWIN, LUX-ZEPLIN **2021/7/6** : 16 countries, 104 scientists **2022/6/27-29** 1st Summer Meeting at KIT in Germany Japan : Kavli IPMU UTokyo, Kobe U, Nagoya U,
- Submitted DARWIN/XLZD proposal to the Science Council of Japan (Future Academic Advancement Initiative) 2022/12

•White Paper:

·A Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics

Masaki Yamashita, IPMU, UTokyo

- The consortium is aiming to build a unique 50-100 tonne ultimate detector XENON-LZ-DARWIN

Liquid Xe TPC: Physics

S2

S1

Dark Matter

- Dark photons
- Axion-like particles
- Planck mass

Sun

 Solar pp neutrinos Solar Boron-8 neutrinos

Supernova

- Supernova neutrinos
- Multimessenger

Masaki Yamashita, Kavli IPMU, The University of Tokyo

WIMPs

- Spin-independent
- Spin-dependent
- Sub-GeV

Big Bang

- Neutrinoless double beta decay
- Double electron capture

Cosmic Rays

 Atmospheric neutrinos

Liquid Xe TPC: Physics

Masaki Yamashita, Kavli IPMU, The University of Tokyo

WIMPs

- Spin-independent
- Spin-dependent
- Sub-GeV

Big Bang

- Neutrinoless double beta decay
- Double electron capture

Cosmic Rays

 Atmospheric neutrinos

Liquid Xe TPC: Physics in Future

Masaki Yamashita, Kavli IPMU, The University of Tokyo

DARWIN Sensitivity

Liquid Xe TPC: Physics in Future

Masaki Yamashita, Kavli IPMU, The University of Tokyo

DARWIN Sensitivity

Conclusion

·DARWIN will be a successor of the state-of-art liquid xenon dark matter detector.

- ·Ultimate detector for WIMP search (neutrino fog)
- -Solar Neutrino
- -Double Beta Decay
- -SuperNova ···

•Recently, we formed the consortium (XLZD) to realize the ultimate dark matter detector with LXe

Masaki Yamashita, IPMU, The University of Tokyo

DARWIN Collaboration ~170 members 33 institutions 11 countries

