検出器開発(TOP counter)

研究目的

- TOP (Time Of Propagation) counter開発
 - 次世代Bファクトリー実験のための粒子識別装置
 - L_{peak}~8x10³⁵/cm²/s, Bファクトリーと比べ、40倍の強度
 - K/π識別効率の向上
 - Physics analysis, Flavor tag, Full reconstruction
- TOPカウンターの原理検証
- 実用化のための性能評価
 - 光検出器MCP-PMTの実用性

TOP counter

開発項目

• MCP-PMT

- 実用化に向けた寿命向上
 - 光電面の劣化メカニズムから対策案
- 量子効率改良
 - GaAsP光電面
 - → Super Bialkali光電面
- プロトタイプ
 - 大型石英+MCP-PMT
 - ビームテスト

 - フォーカスミラーの動作検証(2010/11)
- 実用化に向けた開発
 - Belle-II搭載へ向けた形状最適化
 - 構造体開発
 - 放射線耐性

角型MCP-PMT

R&D with Hamamatsu

- Large effective area 64%
- Position information 4ch (5mm pitch)

1ch 2ch 4ch

22(effective area)

- Single photon detection
- Fast raise time: ~400ps
- Gain: >1x10⁶ at B=1.5T
- T.T.S.(single photon): ~35ps at B=1.5T
- Position resolution: <5mm

MCP-PMT寿命

• 現在のBelle実験の20倍のバックグラウンド環境に耐えうるPMTが必要

	Belle	Belle-II
Luminosity (/cm²/s)	1×10^{34}	8 × 10 ³⁵
Num. of detected photons (/cm ² /s)	3400	68000
Output charge (mC/cm ² /year)	~6	~120

- 丸型MCP-PMT
 - アルミ保護膜を導入することで、十分な寿命を達成

MCP-PMT寿命

- 角型MCP-PMTの寿命測定
 - アルミ保護膜があっても短寿命であることが判明
 - 量子効率の面一様性から内部構造の違いについて考察
 - <u>MCPと側管の間から中性ガスが光電面へ到達し得る</u>

- 改良版MCP-PMTの試作
 - セラミックシールドを導入し、中性ガスを遮断
 - 中性ガスが発生しにくいMCPの処理
 - アルミ保護膜をMCP2枚目へ導入
 - ・収集効率の向上(35%→60%)

• 大幅に向上させることに成功し、十分な寿命を達成

光電面の改良(Super Bi-Alkali)

- GaAsP光電面は歩留まりが向上せず、実用化が困難
- Super bialkali 光電面の適用
 - 28% for super bialkali and 24% for Multi-alkali
 - 検出光子数20%の向上が見込める

MCP-PMT寿命結果

 Super bialkali光電面MCP-PMTにおいても <u>1~2 C/cm²の寿命を達成</u>

角型MCP-PMT (最終版)

Size	27.5 x 27.5 x 14.8 mm
Effective area	22 x 22 mm(64%)
Photo cathode	Super-Bialkali
Q.E.	~28%(λ=400nm)
MCP Channel diameter	10 µm
Number of MCP stage	2
Collection efficiency	~60%
Anode	4 x 4
Anode size (1ch)	5.3 x 5.3 mm
Anode gaps	0.3 mm

- High time resolution
- Large effective area
- Position information
- Sufficient lifetime

σ<40ps
64% by square shape
4x4ch matrix anode (5mm pitch)
>1C/cm²

プロトタイプ製作

石英輻射体

- 高精度研磨石英板2枚
 - 91.5 x 40 x 2 cm³, 岡本光学
 - 平面性: <1.2μm/m
 - 面粗度: <0.5nm
- フォーカスミラー (R=5m)
- 接合
 - 平面度; ~0.2mrad

• アルミハニカム支持体を製作

光検出器

- MCP-PMT14個試作•検査
 - TOPプロトタイプ用
 - 製作での安定性を評価
 - TTS, Gainは安定的
 - 量子効率は開発の必要性有り

MCP-PMT出力に対応した 読み出し回路の開発

色分散効果

 ・輻射体内での伝播速度依存性 + チェレンコフ光の検出波長範囲
 →リングイメージの時間ふらつきを生み出す

→伝播距離に依存した時間分解能の変化

ビームテスト(2008)

リングイメージ・検出光子数

時間分解能

- 期待される時間分解能
- 伝播距離依存性を再現
 - 色分散効果による時間分解能の悪化

Focusing TOP

- フォーカスミラーの導入により色分散を抑 制
 - – 色収差補正のために、チェレンコフ角の波長

 依存性を利用

→ $\lambda \leftarrow \theta_c \leftarrow y dc$ 置

- 2次元位置と時間の3次元情報を用いたリ ングイメージの再構成
- 長距離焦点ミラーの導入により、コンパクト な測定器を実現 + 5mmの位置分解能 で波長分解が可能

ビームテスト(2010)

- **CERN SPS T4-H6B** •
 - pion; +120GeV
 - 11月8-15日

測定結果

PMT

Focus

Mirro

- 角度付き入射(cosθ=0.3に対応)
- 期待される振る舞いを持つリングイメージを取得
- 時間分解能の向上を確認: <u>~95ps</u>
 - シミュレーション: ~103ps
 - 色分解なしでは、2900mmの伝播に対応し、<u>~170ps</u>の分解能
 - 詳細な解析は現在進行中

実用化に向けた開発研究

- Belle-II搭載に向けた形状最適化・構造体開発
 - ハワイ大学、リュブリアナ研究所等との共同開発研究
 - 物理過程(B→ππ, ργなど)に対する性能比較による測定器形状の選択
 - 設置可能な範囲で測定器形状を最適化
 - 既存のBelle構造体に設置できる支持体のデザイン

実用化に向けた開発研究

- 放射線耐性試験

 - 光学素子の透過率、MCP-PMTの量子効率
 - γ線1Mrad, 中性子10¹²n/cm²まで問題なし

名古屋大学Co60照射室

- Time of Flight measurement with MCP-PMT
 - K. Inami, Proceedings for In the Proceedings of International Symposium on Detector Development for Particle, Astroparticle and Synchrotron Radiation Experiments (SNIC 2006)
- A 5-ps TOF-counter with an MCP-PMT
 - K. Inami, N. Kishimoto, Y. Enari, M. Nagamine, T. Ohshima, Nucl.Instrum.Meth.A560:303-308,(2006)
- Lifetime of MCP-PMT
 - N. Kishimoto, M. Nagamine, K. Inami, Y. Enari, T. Ohshima, Nucl.Instrum.Meth.A564:204-211,(2006).
- Timing properties of MCP-PMT
 - K. Inami, Proceedings for International Workshop On New Photon Detectors (PD07), PoS PD07:020,2006
- Cross-talk suppressed multi-anode MCP-PMT
 - K. Inami et al., Nucl Instrum Meth A 592 247 (2008)
- Development of TOP counter for Super B factory
 - K.Inami, Proceedings for 6th International Workshop On Ring Imaging Cherenkov Counters (RICH 2007), Nucl.Instrum.Meth.A595:96-99,(2008).
- Likelihood analysis of patterns in a time-of-propagation (TOP) counter
 - M. Staric, K. Inami, et al, Proceedings for 6th International Workshop On Ring Imaging Cherenkov Counters (RICH 2007), Nucl.Instrum.Meth.A595:252-255,(2008).
- Photomultiplier tubes with three MCPs
 - A.Yu. Barnyakov, K.Inami, T.Mori, T.Ohshima, et al., Proceedings for 10th International Conference on Instrumentation for Colliding Beam Physics (INSTR08), Nucl.Instrum.Meth.A598:160-162,2009.
- Development of a TOP counter for the super B factory
 - K. İnami, Proceedings for Workshop on fast Cherenkov detectors: Photon detection, DIRC design and DAQ, JINST 5:P03006,2010.
- Lifetime-Extended MCP-PMT
 - T. Jinno, T. Mori, T. Ohshima, Y. Arita, K. Inami, et al, Nucl.Instrum.Meth.A629:111-117,2011.
- Performance Test of TOP Counter Prototype
 - T.Mori, Proceedings for IEEE Nuclear Science Symposium 2010
- Lifetime of HPK Square-shape MCP-PMT
 - T.Mori, Proceedings for WORKSHOP ON TIMING DETECTORS

国際会議発表

- Time of Flight measurement with MCP-PMT, K.Inami
 - K.Inami, In the Proceedings of International Symposium on Detector Development for Particle, Astroparticle and Synchrotron Radiation Experiments (SNIC 2006), 2006/4/3 - 6, SLAC, USA
- Timing properties of MCP-PMT, K. Inami
 - Workshop on timing detectors, 2007/3/8-9, Paris, France
 - International Workshop On New Photon Detectors (PD07), 2007/6/27-29, Kobe, Japan
- Development of TOP counter for Super B factory, K.Inami,
 - 6th International Workshop On Ring Imaging Cherenkov Counters (RICH 2007), 2007/10/15-20, Trieste, Italy
- Tests of MCP-PMT for the TOP counter, K.Inami
 - Workshop on timing detectors: Medical and Particle Physics applications, 2008/10/15-16, Lyon, France
- R&D of Particle identification devices with high precision timing,K.Inami
 - The 1st international conference on Technology and Instrumentation in Particle Physics, (TIPP09) 2009/3/12-17, Tsukuba, Japan,
- Development of time of propagation counters, K.Inami
 - Workshop on Fast Cherenkov Detector, 2009/5/11-13, Gie β en, Germany
- TOP counter prototype R&D, K.Inami
 - 7th International Workshop on Ring Imaging Cherenkov Detectors (RICH 2010), 2010/5/3-7, Cassis, Provence, France,
- Performance Test of TOP Counter Prototype, T.Mori
 - IEEE Nuclear Science Symposium 2010, 201/10/30-11/6, Knoxville, TN, USA
- Lifetime of HPK Square-shape MCP-PMT, T.Mori
 - WORKSHOP ON TIMING DETECTORS, 2010/11/29 12/1, Krakow, Poland

学会·国内会議発表

- 第2回次世代光センサーに関するワークショップ 2006/12/7-8, 浜松
 - 居波賢二"TOPカウンター用MCP-PMTの開発"
- 日本物理学会 2007年秋季大会 2007/9/21-24 北海道大学
 - 森隆志 "TOPカウンター用GaAsP光電面MCP-PMTの開発研究
- 日本物理学会 2007年秋季大会 2007/9/21-24 山形大学
 - 森隆志"RICH型粒子識別装置TOPカウンターの実機プロトタイプ構築"
 - 栗本謙"RICH型粒子識別装置TOPカウンターの性能評価"
- 日本物理学会 2009年秋季大会 2008/9/9/10-13 甲南大学
 - 神野高幸 "光検出器MCP-PMTの長寿命化対策"
- 関西中部B中間子の物理研究会 (奈良女子大学)
 - 森隆志 "大学activity: 粒子識別"
- 日本物理学会 2010年次会 2010/3/20-23 岡山大学
 - 居波賢二"Belle II 実験"(招待講演)
 - 有田 義宣 "16チャンネル角型MCP-PMTの開発研究・性能評価"
- 日本物理学会 2010年秋季大会 2010/9/11-14 九州工業大学
 - 鈴木一仁 "TOPカウンターの開発研究-Belle IIでの実機製作に向けた開発・設計状況-"
 - 有田義宣 "Bellell実験TOPカウンター用MCP-PMTの量子効率の改良と寿命測定"
- 第3回次世代光センサーに関するワークショップ 2011/12/17-18,名古屋
 - 鈴木一仁"Lifetime and radiation hardness of MCP-PMT for Belle II TOP counter"
- 日本物理学会 2011年次会 2011/3/25-28 新潟大学
 - 有田義宣 "粒子識別装置 TOPカウンターの色分解による識別能力の向上"
 - 武市秀樹 "Belle II TOPカウンター実機用16ch MCP-PMTの性能"
 - 古賀裕介 "Belle II実 験 粒子識別装置TOPカウンター光学素子の放射線耐性試験"

TOP開発研究まとめ

- TOPカウンターの原理的な動作検証と実用化に向けた開発
- MCP-PMT
 - 安定的に良いTTS(<40ps)、十分なゲインが得られることを確認
 - 内部構造の改良により寿命を向上させた
 - Super Bialkali 光電面の開発
 - 検出光子数の向上、十分な寿命の実現
- プロトタイプの開発・ビームによる性能評価
 - リングイメージ、検出光子数が期待どおり得られた
 - 時間分解能の伝播距離依存性
 - → 色分散効果の大きさを検証
 - フォーカシングミラーを用いた光学系で時間分解能が向上することを確認
- 実用化に向けた研究も進行中
 - TOP形状の最適化、支持構造体の開発
 - 光学部品、MCP-PMTの放射線耐性の評価など

Back up

MCP-PMT

- Micro-Channel-Plate
 - Tiny electron multipliers
 - Diameter ~10μm, length ~400μm
 - High gain
 - ~10⁶ for two-stage type
 - \rightarrow Fast time response

Pulse raise time ~500ps, TTS < 50ps

can operate under high magnetic field (~1T)

Quartz radiator

- Made by Okamoto optics
 - Size; 91.5 x 40 x 2 cm³
 - Flatness: <1.2µm/m
 - Roughness: <0.5nm
- Check the quality for time resolution
 - Single photon pulse laser
 - 🗌 λ=407nm
 - MCP-PMT
 - Several incident position
- \rightarrow No degradation of time resolution
 - Enough quartz quality

PMTモジュール

- HV divider + AMP + Discriminator
- 小型 (28mm^w) •
- 試作機 •
 - 高速アンプ(MMIC, 1GHz, x20)
 - 高速コンパレータ (180ps propagation)

input

- CFD with pattern delay
- 性能
 - Test pulse
 - ~5ps resolution
 - MCP-PMT
 - σ<40ps

放射線照射後の透過率変化

• Quartz

Belle-IIで期待される放射線量に対して変化なし

Configuration study

- Two options
 - 1-bar/2-bar configurations
 - Use the similar detector components and technologies.
 - Same quartz radiator size, same MCP-PMT, same mirror shape
 - By simulation studies and prototype operations, we have confirmed the robustness against the timing jitter, tracking resolution, production readiness etc.

Performance

Performance similar (weighted) for physics case studies

From TDR

• For physics cases

Check by three simulation program

Table 7.8: Efficiencies and fake rates obtained from simulation for $B \to \pi \pi$, under the set of assumptions described in the text.

		K efficiency (%)			π fake rate (%)		
Geometry	Photocathode	GSIM	Geant4	$\operatorname{stand-alone}$	GSIM	Geant4	$\operatorname{stand-alone}$
2-bar	MA	95.8	97.3	96.2	2.6	2.4	3.7
1-bar	MA	93.4	95.5	96.7	5.2	3.9	3.1
2-bar	SBA	96.7	98.1	97.5	1.4	1.5	2.4
1-bar	SBA	95.4	97.2	98.5	3.3	1.9	1.4

Table 7.9: Efficiencies and fake rates obtained from simulation for $B \to \rho \gamma$, under the set of assumptions described in the text.

		K efficiency (%)				π fake rat	e (%)
Geometry	Photocathode	GSIM	Geant4	$\operatorname{stand-alone}$	GSIM	Geant4	$\operatorname{stand-alone}$
2-bar	MA	97.4	99.5	99.1	0.9	0.3	0.9
1-bar	MA	96.8	99.1	98.6	1.0	0.5	2.1
2-bar	SBA	97.7	99.8	99.6	0.8	0.1	0.4
1-bar	SBA	97.4	99.6	99.5	0.7	0.1	1.0

Nagoya Hawaii Ljubljana

• Chose 1-bar configuration due to practical considerations

Comparison

MCI	P-PMT Focus mirror (sphere, r=7000)	MCP-PMT Focus mirror (sphere, r=5000) MCP-PMT			
Bac	ckward Forward	Backward Forward			
	1-bar	2-bar			
Structure /	Needs expansion block	Need forward PMTs + readout			
configuration		Strong bar box (between 2-bars)			
TOP-CDC gap	Somewhat larger (~25mm)	Minimum			
Acceptance	Larger in forward region (better overlap with endcap PID)	There is a small polar angle gap between the 2-bars			
Readout	Backward	At both ends			
Construction	Needs test of prototype	2m prototype			
Performance	Better in the most forward	Better for mid-forward polar angles			
	acceptance	Slightly better overall			
Note	Track extrapolation resolution (<2mrad)	<u>Timing determination (<30ps) for</u> forward (Need precise calib. of 25ps)			

Structure

- Check possible detector size and support
 - Quartz length, width, thickness
 - Minimize dead space and material

Structure design

- Maximize the single module performance under the following constraints.
 - Reuse the existing ECL container.
 - Quartz bar dimension
 - W:400 500 mm x T:~20 mm
 - 16 azimuthal segments (φ = 22.5 deg.)
 - Maximize the azimuthal coverage (η_{ϕ} = 95 %)

GaAsP MCP-PMT; Q.E. 分布

- プロトタイプ
- マルチアルカリ光電面と比較して
- 良い量子効率
 - >35% at 500nm
- 長波長に感度

GaAsP MCP-PMT 基本性能

• 一光子照射時の出力波形, ADC, TDC分布

- 一光子を検出するために十分なゲイン
- 35psの十分良い時間分解能
- ダークカウント:数kHz
 - MCP増幅部は正常に動作
 - 光電面の時間分解能に対する影響は少ない