Υ and ψ decays as probes of solutions to the $R(D^{(*)})$ puzzle

Daniel Aloni

Mini-workshop on $D(*)\tau\nu$ and related topics, Nagoya University

In collaboration with Aielet Efrati (WIS), Yuval Grossman (Cornell), Yossi Nir (WIS) Arxiv: 1702.07356

Υ and ψ decays as probes of solutions to the $R(D^{(\ast)})$ puzzle

Υ and ψ decays as probes of solutions to the $R(D^{(\ast)})$ puzzle

Outline

- Introduction The $R(D^{(*)})$ puzzle
- The EFT and emergence of neutral currents
- Vector meson decays
- Implications of EFT on LFU violation in Υ and ψ decays
- Future prospects
- Summary

Outline

- The EFT and emergence of neutral currents
- Vector meson decays
- Implications of EFT on LFU violation in Υ and ψ decays
- Future prospects
- Summary

The effective field theory

EFT – complete basis

- Demand $G_{SM} = SU(3)_C \times SU(2)_L \times U(1)_Y$ invariance
- Assume no RH neutrinos, *i.e.* $B \rightarrow D \tau \bar{\nu}_L$
- A complete set for $b\to c\tau\bar\nu$ transitions contains only four operators
 - $(\bar{e}L)(\bar{u}Q)$
 - $\quad (\bar{e}\sigma^{\mu\nu}L)(\bar{u}\sigma_{\mu\nu}Q)$
 - $\cdot \ (\bar{L}\gamma^{\mu}\tau_{a}L)(\bar{Q}\gamma^{\mu}\tau_{a}Q)$
 - $\rightarrow (\bar{Q}d)(\bar{e}L)$

EFT – unavoidable NC

- All four operators contain also neutral currents (NC)
 - → For instance

$$(\bar{e}L)(\bar{u}Q) = \overbrace{(\bar{e}_R\nu_L)(\bar{u}_Rd_L)}^{CC} - \overbrace{(\bar{e}_Re_L)(\bar{u}_Ru_L)}^{NC}$$

• We looked for observables sensitive to those NC

- Neutral currents unavoidably modify $\,bar{b},car{c}
ightarrow auar{ au}$

EFT – NC observables

• D. A. Faroughy, A. Greljo, J. F. Kamenik * – High P_T distribution of $\tau \overline{\tau}$ signature at the LHC (tomorrow)

- We looked on lepton non universality of Υ and ψ decays

$$R_{\tau/\ell}^{V} \equiv \frac{\Gamma(V \to \tau^{+} \tau^{-})}{\Gamma(V \to \ell^{+} \ell^{-})}, \quad (V = \Upsilon, \psi(2s); \ \ell = e, \mu)$$

• Wilson coefficients are evaluated at the same scale

* D. A. Fraoughy, A. Greljo, J. F. Kamenik, Phys. Lett. B764 (2017) 126-134

Vector meson decay

Vector meson decay - SM

• Within the SM

$$R_{\tau/\ell}^V \simeq (1 + 2x_{\tau}^2)(1 - 4x_{\tau}^2)^{1/2}$$

where $x_{\tau} = m_{\tau}/m_V$.

- Dominantly QED 1 photon exchange
- For $\ell = e, \mu$ we take $x_\ell = 0$

Vector meson decay – SM corrections

• Within the SM

$$R_{\tau/\ell}^V \simeq (1 + 2x_{\tau}^2)(1 - 4x_{\tau}^2)^{1/2}$$

where $x_{ au} = m_{ au}/m_V$.

- Leading corrections:
 - > Corrections due to m_{μ} are $\delta R_{\tau/\ell}^V \lesssim \mathcal{O}(10^{-7})$
 - ► Corrections due to Z exchange are $\delta R_{\tau/\ell}^V \lesssim \mathcal{O}(10^{-5})$
 - > QED at 1-loop $\delta R_{\tau/\ell}^V \simeq 6 \cdot 10^{-3} x_{\tau}^2 \sim \mathcal{O}(10^{-4})$ (inclusive)

$$R_{ au/\ell}^V$$
 - Prediction vs. measurement

V(nS)	SM prediction	Exp. value $\pm \sigma_{\text{stat}} \pm \sigma_{\text{syst}}$
$\Upsilon(1S)$	$0.9924 \pm \mathcal{O}(10^{-5})$	$1.005 \pm 0.013 \pm 0.022$
$\Upsilon(2S)$	$0.9940 \pm \mathcal{O}(10^{-5})$	$1.04 \pm 0.04 \pm 0.05$
$\Upsilon(3S)$	$0.9948 \pm \mathcal{O}(10^{-5})$	$1.05 \pm 0.08 \pm 0.05$
$\psi(2S)$	$0.390 \pm \mathcal{O}(10^{-4})$	0.39 ± 0.05

Vector meson decay – dim(6) operators

• Nine independent dim.(6) operators contribute to leptonic meson decays

$$\mathcal{L}_{\ell q} = C_{VRR}^{q\ell} (\bar{e}_R \gamma^{\mu} e_R) (\bar{q}_R \gamma_{\mu} q_R) + C_{VRL}^{q\ell} (\bar{e}_R \gamma^{\mu} e_R) (\bar{q}_L \gamma_{\mu} q_L) + C_{VLR}^{q\ell} (\bar{e}_L \gamma^{\mu} e_L) (\bar{q}_R \gamma_{\mu} q_R) + C_{VLL}^{q\ell} (\bar{e}_L \gamma^{\mu} e_L) (\bar{q}_L \gamma_{\mu} q_L) + C_T^{q\ell} (\bar{e}_L \sigma^{\mu\nu} e_R) (\bar{q} \sigma_{\mu\nu} q) + \text{h.c. (+scalar operators)}$$

• A straightforward calculation relates the 9 Wilson coefficient $C_A^{q\ell}$ to 4 form factors appearing in the ratio

$$R_{\tau/\ell}^{V} \simeq \frac{\sqrt{1 - 4x_{\tau}^{2}}}{(4\pi\alpha Q_{q})^{2}} \Big[|\tilde{A}_{V}^{q\tau}|^{2} \left(1 + 2x_{\tau}^{2}\right) + |\tilde{B}_{V}^{q\tau}|^{2} \left(1 - 4x_{\tau}^{2}\right) + \frac{|\tilde{C}_{V}^{q\tau}|^{2}}{2} \left(1 - 4x_{\tau}^{2}\right)^{2} + \frac{|\tilde{D}_{V}^{q\tau}|^{2}}{2} \left(1 - 4x_{\tau}^{2}\right) + 2\operatorname{Re}\left[\tilde{A}_{V}^{q\tau}\tilde{C}_{V}^{*q\tau}\right] x_{\tau} \left(1 - 4x_{\tau}^{2}\right) \Big]$$

Connecting charge currents to neutral currents

The need for assumptions

- There are four independent CC operators
- There are nine independent NC operators
- CC + Gauge invariance NC
 - Not enough measurements to fix the values of the Wilson coefficients of the four CC operators *
 - → No information on the other five NC operators

* D. Bardhan, P. Byakti, D. Ghosh, **JHEP 1701**, 125 (2017)

EFT from simplified models

- Recall that

 - → Central value is ~ 30% enhanced compared to prediction
- Huge enhancement of tree-level suggests new bosons which also modify $b \to c \tau \bar{\nu}$ at tree-level
- There are eight different possible mediators $W'_{\mu} \sim (1,3)_0, U_{\mu} \sim (3,1)_{2/3}, X_{\mu} \sim (3,3)_{2/3}, S \sim (3,1)_{-1/3},$ $T \sim (3,3)_{-1/3}, \phi \sim (1,2)_{1,2}, D \sim (3,2)_{7/6}, V_{\mu} \sim (3,2)_{-5/6}$

EFT – fixing all NC

- Motivated by FCNC and LHC constraints
 - → We impose $U(2)_Q$ symmetry of the light left-handed quarks
 - → We assume flavor alignment to the down mass basis
- Choosing a simplified model
 - → Fixes the 4 CC Wilson coefficients (up to overall normalization)
 - → Fixes the 4 corresponding NC, as well as the 5 other NC. For instance a mediator which generates $(\bar{u}L)(\bar{e}Q)$ will also generate $(\bar{u}L)(\bar{L}u), (\bar{e}Q)(\bar{Q}e)$

Numerical results – analysis

- Complete list of simplified models - $W'_{\mu} \sim (1,3)_0, U_{\mu} \sim (3,1)_{2/3}, X_{\mu} \sim (3,3)_{2/3}, S \sim (3,1)_{-1/3},$ $T \sim (3,3)_{-1/3}, \phi \sim (1,2)_{1,2}, D \sim (3,2)_{7/6}, V_{\mu} \sim (3,2)_{-5/6}$
- Normalize the Wilson coefficients by Integrating out the heavy mediator
- Find best-fit values of new couplings to minimize the $R(D^{(*)})$ anomaly (χ^2)
- Calculate the *p-value* for each model
- Find the 95% C.L. interval of the new couplings
- Calculate $R^{\Upsilon}_{\tau/\ell}$ and $R^{\psi}_{\tau/\ell}$ within the allowed region

Numerical results – example $U_{\mu} \sim (3,1)_{2/3}$

• UV

$$\mathcal{L}_U = g_1 \bar{Q}_3 \psi L_3 + g_2 \bar{d}_3 \psi e_3 + h.c.$$

• EFT

$$\mathcal{L}_{U}^{EFT} = -\frac{|g_{1}|^{2}}{2M_{U}^{2}} \underbrace{(\bar{L}\gamma^{\mu}L)(\bar{Q}\gamma_{\mu}Q)}_{N.C.} - \frac{2|g_{1}|^{2}}{M_{U}^{2}} \underbrace{(\bar{L}\gamma^{\mu}\tau_{a}L)(\bar{Q}\gamma_{\mu}\tau_{a}Q)}_{N.C.+C.C.} - \frac{|g_{2}|^{2}}{M_{U}^{2}} \underbrace{(\bar{e}\gamma^{\mu}e)(\bar{d}\gamma_{\mu}d)}_{N.C.+C.C.} + \left[\frac{g_{1}g_{2}^{*}}{M_{U}^{2}} \underbrace{(\bar{Q}d)(\bar{e}L)}_{N-C.+C.C.}\right]$$

Numerical results – example $U_{\mu} \sim (3,1)_{2/3}$

• Results: $(g_1^{2\ bfp}, g_2^{2\ bfp}) = (3.3, 0.4) \left(\frac{M_U}{TeV}\right)^2, \ p = 100\%$

 $R_{\tau/\ell}^{\Upsilon(1S)} = 0.922 - 0.990$ $R_{\tau/\ell}^{\Upsilon(2S)} = 0.915 - 0.991$ $R_{\tau/\ell}^{\Upsilon(3S)} = 0.911 - 0.992$

• $R_{ au\ell}^{\psi(2S)}$ is not modified

UV field content	$R_{ au/\ell}^{\Upsilon(1S)}$	$R^{\psi(2S)}_{\tau/\ell}$	Predicted modification to $R_{\tau/\ell}^{\Upsilon(1S)}$
$W'_{\mu} \sim (1,3)_0$	0.989-0.991	0.390	Decrease by $0.2\% - 0.4\%$
$U_{\mu} \sim (3,1)_{+2/3}$	0.922-0.990	SM	Decrease by $0.3\% - 7.1\%$
$S \sim (3,1)_{-1/3}$	SM	0.389-0.390	_
$V_{\mu} \sim (3,2)_{-5/6}$	0.975-0.985	SM	Decrease by $0.7\% - 1.7\%$
SM	0.992	0.390	
Current measurement	1.005 ± 0.025	0.39 ± 0.05	
Achievable uncertainty (with current data)	± 0.01	± 0.02	
Projected uncertainty ($\mathcal{L}^{\Upsilon(3S)} = 1/ab$ in Belle II)	± 0.004	_	

UV field content	$\left \begin{array}{c} R^{\Upsilon(1S)}_{\tau/\ell} \end{array} \right $	$R^{\psi(2S)}_{\tau/\ell}$	Predicted modification to $R_{\tau/\ell}^{\Upsilon(1S)}$
$W'_{\mu} \sim (1,3)_0$	0.989-0.991	0.390	Decrease by $0.2\% - 0.4\%$
$U_{\mu} \sim (3,1)_{+2/3}$	0.922-0.990	SM	Decrease by $0.3\% - 7.1\%$
$S \sim (3,1)_{-1/3}$	SM	0.389-0.390	_
$V_{\mu} \sim (3,2)_{-5/6}$	0.975-0.985	SM	Decrease by $0.7\% - 1.7\%$
SM	0.992	0.390	
Current measurement	1.005 ± 0.025	0.39 ± 0.05	
Achievable uncertainty (with current data)	± 0.01	± 0.02	
Projected uncertainty ($\mathcal{L}^{\Upsilon(3S)} = 1/ab$ in Belle II)	± 0.004	_	

UV field content	$\begin{array}{ c c } R^{\Upsilon(1S)}_{\tau/\ell} \end{array}$	$R^{\psi(2S)}_{\tau/\ell}$	Predicted modification to $R_{\tau/\ell}^{\Upsilon(1S)}$
$W'_{\mu} \sim (1,3)_0$	0.989-0.991	0.390	Decrease by $0.2\% - 0.4\%$
$U_{\mu} \sim (3,1)_{+2/3}$	0.922-0.990	SM	Decrease by $0.3\% - 7.1\%$
$S \sim (3,1)_{-1/3}$	SM	0.389-0.390	-
$V_{\mu} \sim (3,2)_{-5/6}$	0.975-0.985	SM	Decrease by $0.7\% - 1.7\%$
SM	0.992	0.390	
Current measurement	1.005 ± 0.025	0.39 ± 0.05	
Achievable uncertainty (with current data)	± 0.01	± 0.02	
Projected uncertainty ($\mathcal{L}^{\Upsilon(3S)} = 1/ab$ in Belle II)	± 0.004	_	

UV field content	$R^{\Upsilon(1S)}_{ au/\ell}$	$R^{\psi(2S)}_{\tau/\ell}$	Predicted modification to $R_{\tau/\ell}^{\Upsilon(1S)}$
$W'_{\mu} \sim (1,3)_0$	0.989-0.991	0.390	Decrease by $0.2\% - 0.4\%$
$U_{\mu} \sim (3,1)_{+2/3}$	0.922-0.990	SM	Decrease by 0.3% - 7.1%
$S \sim (3,1)_{-1/3}$	SM	0.389-0.390	_
$V_{\mu} \sim (3,2)_{-5/6}$	0.975-0.985	SM	Decrease by $0.7\% - 1.7\%$
SM	0.992	0.390	
Current measurement	1.005 ± 0.025	0.39 ± 0.05	
Achievable uncertainty (with current data)	± 0.01	± 0.02	
Projected uncertainty ($\mathcal{L}^{\Upsilon(3S)} = 1/ab$ in Belle II)	± 0.004	_	

Future prospects

Future prospects - $\psi(2S)$

- Current error is $\sigma \sim 13\%$
- Bess II already has 10 times larger data sample than what was analyzed, giving $\,\sigma\sim 4\%$
- We predict that $R^{\psi}_{ au/\ell}$ is modified by at most few per-mil
- Removing the imposed $U(2)_Q$ symmetry might lead to a much larger modification (work in progress)
- An order of magnitude improvement is needed to be achieved in Bess III

Future prospects - $\Upsilon(nS)$

- Current error is ~ $\sigma_{1S}^{\scriptscriptstyle BaBar} \sim 2\%, \ \sigma_{2S}^{\scriptscriptstyle CLEO} \sim 5\%, \ \sigma_{3S}^{\scriptscriptstyle CLEO} \sim 8\%$
- Babar and Belle have 16-20 times larger data samples than what was analyzed, giving $\sigma \sim 1\%$
- Running at $\Upsilon(3S)$ with $\mathcal{L} \sim 1/ab$ Belle II might reach $\sigma_{1S} \simeq 0.4\%$
- LFU in Υ decays provide additional motivation to study $\Upsilon(3S)$ at early physics program of Belle II (w/o full vertex detector)

Future prospects -
$$\Upsilon(nS)$$

• We suggest a SM test:

Summary

- $R(D^{(*)})$ is enhanced compared to the SM at 3.9σ
- Explaining this enhancement suggests new bosons which mediate the $b \rightarrow c \tau \nu$ transition at tree-level
- Such bosons can generate observable LFU violation in vector meson decay
- Current measurements of ψ decays do not have the required accuracy
- Current (not analyzed) data of $\Upsilon(1S)$ can already disfavor some of the parameter space
- Belle II can contribute significantly if operates below the $\Upsilon(4S)$ resonance

Thank you!

Backup

q^2 distributions

Corrections – Z exchange

$$\delta R_V^Z = \left(\frac{\epsilon}{\epsilon - 1}\right)^2 \left(\frac{g_V^q}{8Q_q c_W^2 s_W^2}\right)^2 \left(\frac{64x_\ell^2}{1 + 2x_\ell^2}\right)$$

Where $\epsilon = m_V^2/m_Z^2$ and $g_V^q = T_3^q - 2Q_q s_W^2$

Corrections – QED 1-loop

 $R_{\tau/\ell}^V = (1 - 4x_\tau^2)^{1/2} \left(1 + 2x_\tau^2\right)$ $\cdot \left[1 + \frac{4\alpha x_{\tau}^2}{\pi} \left(2 - \log[4] \right) \right]$

Vector meson decay – Dim(6) operators

Relation between Wilson coefficient and Form-factors:

$$\begin{split} A_V^{q\ell} &= -4\pi\alpha Q_q + \frac{m_V^2}{4} \left[\left(C_{VLL}^{q\ell} + C_{VRR}^{q\ell} + C_{VLR}^{q\ell} + C_{VRL}^{q\ell} \right) + 16x_\ell \frac{f_V^T}{f_V} \text{Re} \left[C_T^{q\ell} \right] \right] \\ B_V^{q\ell} &= \frac{m_V^2}{4} \left(C_{VRR}^{q\ell} + C_{VRL}^{q\ell} - C_{VLR}^{q\ell} - C_{VLL}^{q\ell} \right), \\ C_V^{q\ell} &= 2m_V^2 \frac{f_V^T}{f_V} \text{Re} \left[C_T^{q\ell} \right], \\ D_V^{q\ell} &= 2m_V^2 \frac{f_V^T}{f_V} \text{Im} \left[C_T^{q\ell} \right]. \end{split}$$

where

$\langle 0|\bar{q}\gamma^{\mu}|V(p)\rangle = f_V m_V \epsilon^{\mu}(p) , \ \langle 0|\bar{q}\sigma^{\mu\nu}|V(p)\rangle = f_V^T[\epsilon^{\mu}(p)p^{\nu} - \epsilon^{\nu}(p)p^{\mu}]$