Radiative/Electroweak *B* Decays at SuperKEKB

Follow-up of BNM-I and summary for write-up

Mikihiko Nakao (KEK) with helps from Shohei Nishida, Yutaka Ushiroda, Kazutaka Sumisawa December 19th, 2006, BNM2006II

mikihiko.nakao@kek.jp.

• $b \rightarrow s\gamma$ processes

- Full- and semi- inclusive $B \rightarrow X_s \gamma$ BF and A_{CP}
- $B \rightarrow K^* \gamma$ BF, A_{CP} , isospin asymmetry
- Higher resonances: $B \rightarrow K_2^*(1430)\gamma$, $B \rightarrow K_1(1270)\gamma$
- Three-body decays: $B \to K\phi\gamma$, $B \to K\eta\gamma$, $B \to \Lambda \overline{p}\gamma$
- Time-dependent CPV: $B \rightarrow K_{s}^{0} \pi^{0} \gamma$
- $b \rightarrow s\ell^+\ell^-$ processes
 - Exclusive $B \to K\ell^+\ell^-$, $B \to K^*\ell^+\ell^-$
 - Semi-inclusive $B \to X_s \ell^+ \ell^-$
 - First $A_{FB}(B \rightarrow K^* \ell^+ \ell^-)$
- $b \rightarrow d\gamma$ processes
 - Combined $B \rightarrow (\rho, \omega) \gamma$ observed $\Rightarrow |V_{td}/V_{ts}|$

Many observables that are sensitive to new physics

Precision Physics with Radiative/EW *B* **decays**

No order one deviation found, and probably not in future i.e., need precision measurements

- Revival of $\mathcal{B}(B \to X_s \gamma)$ to identify new physics NNLO calculation \Leftrightarrow Precision measurement below 5% error
- Hope to measure $\mathcal{B}(B \to X_d \gamma)$ for $|V_{td}|$ \Rightarrow Once we have a 5σ measurement, $\delta |V_{td}| \sim 10\%$
- For exclusive modes, "ratios/asymmetries" are keys
 - ⇒ Most have been already measured, with limited statistics
 - \Rightarrow Sensitive to new physics since theory errors are reduced
 - \Rightarrow Direct and time-dep. CPV, A_{FB} , isospin asymmetry, ...

What was new at BNM-I

- New study of semi-inclusive $b \rightarrow d\gamma$ study
 - Second try on estimating inclusive $b \rightarrow d\gamma$ sensitivity
 - More realistic MC sample and cuts
 - 7.5 σ signal with 5 ab⁻¹
- Photon polarization measurement of $B \rightarrow K^* \gamma$
 - First try to use $\gamma \rightarrow e^+e^-$ conversion to measure photon polarization
 - Very clear signal can be reconstructed
 - 3σ modulation could be found if $A_R \sim A_L$ with 5 ab⁻¹

After a more detailed studies, we found these are too optimistic...

$B \rightarrow X_d \gamma$ branching fraction

text dummy text dummy text dummy text dummy text

Inclusive $B \to X_d \gamma$

10000

• No form-factors from BF ratio to $|V_{td}/V_{ts}|$

$$\left|\frac{V_{td}}{V_{ts}}\right|^2 \propto \left[\frac{\mathcal{B}(B \to X_d \gamma)}{\mathcal{B}(B \to X_s \gamma)} + \text{corr.}\right]$$

Small theory error (corr. for annihilation diagram, etc.) • BF~ 1.5×10^{-5} , but experimentally challenging:

At BNM-I, $EvtGen M(X_d)$ spectrum didn't look correct (shifted towards lower), and $B \rightarrow (\rho, \omega)\gamma$ region was double counted (making efficiency too high).

MC cut tuning

- 1st try at Hawaii Joint SuperB WS ('05 Apr.), 2nd try at BNM-I
- More realistic MC samples and cuts
 - Continuum suppression from $B \rightarrow \rho \gamma$ analysis
 - 2–4 π (up to 1 π^0) final state for $M(X_d) < 2.0 \text{ GeV}$
 - New K_S^0 veto \Rightarrow reduces peaking $b \rightarrow s\gamma$ background
 - $b \rightarrow c$ backgrounds are now included, but no charmless ($B \rightarrow \pi^0 X$, etc) yet

 $B \rightarrow X_d \gamma$ at 5 ab⁻¹

$B \rightarrow X_d \gamma$ seems to be possible with 5 ab⁻¹!

(still challenging, systematic error could be quite different in reality)

$B \rightarrow X_d \gamma$ worries and hopes

Worries...

- $B \rightarrow \pi^0 X$ could be a dangerous peaking background (to be studied)
- $M(X_d)$ spectrum is assumed to be the same as $M(X_s)$. No theory calculation to my knowledge

Hopes!

- $B \to K^* \gamma$ is a huge background over wide $M(X_d)$, may be suppressed by $M(K''\pi)$ cut
- Current PID is assumed in this study a better PID device should kill $b \rightarrow s\gamma$ more effectively, and fake rate error (the dominant part of fitting error) should be reduced

Either Hopes or Worries...

- Fitting error is not really well studied. Could be different?
- No more bug in the analysis?

Photon helicity measurements from γ -conversion

lummy text dummy text dummy text dummy text

Photon helicity measurements from γ -conversion

• $B \rightarrow K^* \gamma$ with $\gamma \rightarrow e^+ e^-$ in the detector could be used to measure the left- and non-SM right-handed components $(A_L \text{ and } A_R)$ (Grossman-Pirjol JHEP 0006,029(2000))

• If $A_R \neq 0$, phi modulation in the form:

$$1 + \xi(E_e, q^2) \frac{|A_R| |A_L|}{|A_R|^2 + |A_L|^2} [\cos(2\phi + \delta)], \qquad \begin{bmatrix} \xi: \text{ efficiency factor } \\ \text{average } \xi \sim 0.3 \end{bmatrix}$$

Easy analysis?

- Even if conversion rate is low (~ 3%), $\mathcal{B}(B \to K^*\gamma)$ is relatively large \Rightarrow ~ 100 events per 500 fb⁻¹
- Signal is very clean because the dominant background is also suppressed with the same conversion rate
- Standard reconstruction techniques to find the events, then calculate ϕ distribution
- Assumption 1: efficiency factor ξ is reasonably large
- Assumption 2: ϕ is easy to measure, θ is not needed

These two assumptions (at BNM-I) seem to be too optimistic

Efficiency factor

Signal reconstruction

Almost fully-optimized selection criteriaboth eid>0.9 $LR(\text{mod.FW}, \cos \theta_B, \Delta z) > 0.8$ π^0/η -likelihood veto $5.270 < M_{bc} < 5.286 \text{ GeV}$ $|M(K\pi) - M(K^*)| < 75 \text{ MeV}$ $-0.1 < \Delta E < 0.08 \text{ GeV}$ kid>0.6 for K else π (or K_s^0 cut / π^0 cut for $K^{*+}\gamma$)

$M_{\rm bc}$, ΔE and efficiency

Caution: analysis is still under construction, everything is not necessarily consistent.

Conversion in $r - \phi$ **plane (SVD2)**

Angular resolution

- Theta is not measured at all
- Phi could be measured to some extent

Toy MC (50 ab^{-1})

- For $A_R \sim A_L$, $|A_R||A_L|/(|A_R|^2 + |A_L|^2) = 0.5$
 - \Rightarrow 5% modulation after integrating *E* and θ (ξ = 0.103)
- \bullet Perfect detector with no background, $\sim 4\sigma$ effect (LEFT)
- If ϕ resolution $\sigma = 23^{\circ}$, still ~ 4σ effect (RIGHT)
- If effective ϕ efficiency $\epsilon_{\phi} = 35\%$, drops to 2σ effect (RIGHT) (note that $\epsilon_{\phi} = 35\%$ is achieved only if conversion point is 100% correctly reconstructed)

Photon conversion hopes and worries

Hopes!

- SuperB vertex detector will have more layers (by factor 2?)
 higher conversion rate
- Angular resolution should be much better with dedicated a track reconstruction code
- If opening angle is measured, full fit on (E, θ, ϕ)

Worries...

- Totally based on GEANT. Is it correctly modeled?
- How to calibrate MC?
 No good control sample (polarized photon) within Belle (Spring-8 polarized photon beam may be usable for a beam test)

$B \rightarrow X_S \gamma$ branching fraction

text dummy text dummy text dummy text dummy text

$B \rightarrow X_s \gamma$ branching fraction

Tension between measurement and NNLO calculation?

Charged Higgs limit

- Lower limit on type-II charged Higgs mass for any $\tan \beta$ (Misiak et al, hep-ph/0609232)
- $M(H^+) > 295 \text{ GeV} (95\% \text{ CL}), \text{ or } M(H^+) \sim 650 \text{ GeV}(?)$
- Need to decrease the experimental error!
- Room for other new physics

$B \rightarrow X_s \gamma$ hopes and worries

Hopes

- E_{γ} cut could be lowered to 1.6 GeV before SuperB, or further down with SuperB
- All NNLO calculations converges with a small error (~ 5%) or less, and agree with the fraction above E_{γ} cut (Neubert, Gardi, ...)

Either Hopes or Worries...

- Theorists (Misiak et al) finds no other large corrections to push up the prediction high again
- No way to get a 3σ effect, no matter how well measured? Any tension could be an input to a bigger NP fit

Worries...

• Hadronic background — anti- n, K_L^0, \ldots

Two more methods

$B \rightarrow X_s \gamma$ with photon conversion

- Conversion fraction ~ 3% \Rightarrow 10 event / fb⁻¹
- Same fraction of continuum and $B \rightarrow \pi^0 X$
- No anti-*n* and K_L^0 , but should be easier
- Excellent E_{γ} resolution (though in $\Upsilon(4S)$ frame...)
- Absolute conversion fraction is not known precisely calibrate with $B \rightarrow K^* \gamma$

Full-reconstruct tagged $B \rightarrow X_s \gamma$

- Tag-efficiency ~ 0.3% \Rightarrow 1 event / fb⁻¹
- Clean signal, other cut efficiency should be high
- Much less affected by continuum, same fraction of $B \rightarrow \pi^0 X$
- Still anti-*n* and K_L^0 , but should be easier

Additions and Summary (more materials in backup slides)

text dummy text dummy text dummy text dummy text

Additions from Lol and BNM-I (1)

- $A_{FB}(B \rightarrow K^* \ell^+ \ell^-)$ and Wilson Coefficients
 - Today: first measurement, $A_9A_{10} < 0$
 - $\delta A_9 \sim 0.11$, $\delta A_{10} \sim 0.13$ at 5 ab⁻¹, $\delta A_9 \sim \delta A_{10} \sim 0.04$ at 50 ab⁻¹
- Branching fraction and A_{FB} for B → X_sℓ⁺ℓ⁻
 Today: $\mathcal{B}(B \to X_s \ell^+ \ell^-) = (4.5 \pm 1.0) \times 10^{-6}$ not so easy to scale

$$R_K = \Gamma(B \to K\mu^+\mu^-) / \Gamma(B \to Ke^+e^-)$$

• Today: $R_K = 1.48 \pm 0.32$, $R_{K^*} = 1.15 \pm 0.31$ (HFAG ~ 0.5 ab⁻¹)

• SM:
$$R_K = 1$$
, $R_{K^*} = 0.75$

• $\delta R_K \sim 0.07 \text{ at } 5 \text{ ab}^{-1}$, $\delta R_K \sim 0.02 \text{ at } 50 \text{ ab}^{-1}$

Additions from Lol and BNM-I (2)

- $B \rightarrow K^* e^+ e^-$ at very low q^2
 - sensitive to photon polarization (Grossman, CSKim)
- $B \rightarrow (\pi, \rho)\ell^+\ell^-$ — sensitive to $|V_{td}/V_{ts}|$
- $B \rightarrow X_{(s+d)}\gamma$ direct CPV — extremely small SM CPV (Hurth)
- Triple products using $B \rightarrow K_1(1400)\gamma$ — search for right handed current (Gronau)
- Triple products using $B \rightarrow K\phi\gamma$ — null test for vast range of new physics (Soni)
- Isospin asymmetry in $B \rightarrow X_s \gamma$
 - test of scale dependece for photon energy cut (Neubert)
- Isospin asymmetry for $B \rightarrow (\rho, \omega)\gamma$ — test of QCDE/pQCD predictions and even
 - test of QCDF/pQCD predictions and eventually Lattice?

Summary

Rich physics program from radiative and electroweak decays

- $\mathcal{B}(b \to s\gamma)$, still the place to search for deviation from SM
 - Slight tension between NNLO and data \Rightarrow room for NP
 - Rooms to improve measurements (some needs SuperB)
- Right-handed amplitude if exists from
 - Time-dependent CPV in $b \rightarrow s\gamma$
 - Photon polarization from conversion
- Reliable $|V_{td}/V_{ts}|$ from inclusive $b \rightarrow d\gamma$
 - Small theory error, competitive to Δm_s measurements
 - Not relying on Lattice QCD at all
- And more...
 - \bullet A_{FB} , R_K , direct CPV, isospin violation, ...

Backup Slides

text dummy text dummy text dummy text dummy text

EW / radiative *B* decays at SuperKEKB

Statistics dominated studies

- Forward-backward asymmetry in $B \rightarrow K^* \ell^+ \ell^-$
- $R_K = \Gamma(B \to K\mu^+\mu^-)/\Gamma(B \to Ke^+e^-)$
- Time-dependent CPV in $B \rightarrow K^*\gamma$, $B \rightarrow \rho\gamma$ and more
- $\bullet A_{CP}(B \to X_s \gamma)$
- Photon helicity measurement from photon conversion
- Technically challenging studies
 - Improving $\mathcal{B}(B \to X_s \gamma)$
 - Improving $\mathcal{B}(B \to X_s \ell^+ \ell^-)$
 - Inclusive $\mathcal{B}(B \to X_d \gamma)$ measurement
 - Photon helicity measurement from $B \rightarrow K_1(1400)\gamma$

(red colored items = new or updated studies in this talk)

$A_{FB}(B \rightarrow K^* \ell^+ \ell^-)$ from HL6 workshop

- Sensitive to C_9 and C_{10} Wilson coefficients
- Full (q^2, θ) fit with SM q^2 dist with leading coefficients only (A_9 and A_{10})
 - $\delta A_9/A_9 \sim 11\%$ $\delta A_{10}/A_{10} \sim 13\%$ at 5 ab⁻¹ (i.e., $\delta A_9/A_9 \sim \delta A_{10}/A_{10} \sim 4\%$ at 50 ab⁻¹)

- $|V_{td}/V_{ts}|$ from $b \rightarrow d\gamma$: not very competitive with Tevatron B_s mixing, but still the second best measurement
- Belle/Babar have reported $|V_{td}/V_{ts}|$ using combined $B \rightarrow (\rho, \omega)\gamma$, but,
 - $B^+ \rightarrow \rho^+ \gamma$ should be dropped because of annihilation diagram

- $B \rightarrow \omega \gamma$ should be dropped because of less knowledge
- And still the theory error would be 20–30% in BF

$$\frac{\mathcal{B}(\overline{B}{}^0 \to \rho^0 \gamma)}{\mathcal{B}(B^0 \to K^{*0} \gamma)} = \frac{1}{2} \left| \frac{V_{td}}{V_{ts}} \right|^2 \frac{(1 - m_\rho^2 / m_B^2)^3}{(1 - m_{K^*}^2 / m_B^2)^3} \zeta^2 [1 + \Delta R]$$

Future sensitivity on $\overline{B}{}^0 \rightarrow \rho^0 \gamma$

If we scale the Belle result with fixed 3% systematic error, $\mathcal{B}(\overline{B}^0 \to \rho^0 \gamma) = (1.25 \substack{+0.37 \\ -0.33 } \substack{+0.07 \\ -0.06}) \times 10^{-6}$, Error will drop quickly below the level of theory error (i.e., no more improvements on $|V_{td}/V_{ts}|$ soon)

Time-dependent CPV in radiative decays

Time-dependent CPV for radiative decays with CP eigenstate or $P^0 Q^0 \gamma$

 $A_{CP}(\Delta t) = \frac{\Gamma(B^{0}(t) \to K_{S}^{0} \pi^{0} \gamma) - \Gamma(\overline{B}^{0}(t) \to K_{S}^{0} \pi^{0} \gamma)}{\Gamma(B^{0}(t) \to K_{S}^{0} \pi^{0} \gamma) + \Gamma(\overline{B}^{0}(t) \to K_{S}^{0} \pi^{0} \gamma)} = S \sin \Delta m \Delta t + A \cos \Delta m \Delta t$

• Due to left handed photon of SM $b \rightarrow s\gamma$, S is small At largest $|S| \sim 0.10 \Rightarrow$ any large S term due to non-SM right handed photon such as left-right symmetric model

$$B \to K^0_S \pi^0 \gamma, B \to K^0_S \eta (\to \gamma \gamma) \gamma, \dots$$

 \bullet K_S^0 vertex reconstruction technique established

- $B \to K^0_S \phi \gamma, B \to K^0_S \eta (\to \pi^+ \pi^- \pi^0) \gamma, B \to K^0_S \eta' \gamma, B \to K^0_S \rho^0 \gamma, \dots$
 - Standard vertexing, but rates are very low
- $B \to \rho^0 \gamma, B \to \omega \gamma$
 - CPV would be large and may not be easy to interpret, but interesting to see it

$B \rightarrow K_S^0 \pi^0 \gamma$ TCPV at SuperKEKB

Extrapolation of 0.5 ab^{-1} errors

$B \rightarrow \rho^0 \gamma \text{ TCPV at SuperKEKB}$

• Toy MC study based on Belle's and SM-like $\overline{B}{}^0 \rightarrow \rho^0 \gamma$ rate

- Vertexing efficiency $\sim 87\%$ (a la ϕK_S^0)
- All background PDF $B \rightarrow K^* \gamma, X_s \gamma, \rho \pi^0$, other B decays, continuum
- Background Δt PDF from $K_S^0 \pi^0 \gamma$ analysis

Need 50 ab^{-1} for ~ 10% error

For a better angular resolution

- Track fit has to be redone with
 - constraints of the conversion point to be on SVD
 - eproper handling of overlapping SVD cluster for two tracks
- No such a code is available yet
 - At least SVD hit info is needed, current MDST_xxx is not enough
 - Size of SVD hit info will be small if limited to the SVD hits for conversion tracks
 - Ishino-san and I will work on it to at least include SVD hit info in MDST_xxx hopefully before grand reprocess

Reconstructed vs true conversion point

Reconstructed conversion vertex tends to be more outside

SVD plane

- Direction precisely measured, but radius is not Could be wrong by a few cm!
- Should be improved by using geometry knowledge

Recon – true radius in cm

$m(e^+e^-)$ resolution

• No correlation in true vs measured $m(e^+e^-)$ (LEFT-BOTTOM) even after moving pivot to SVD plane (RIGHT-BOTTOM) \Rightarrow i.e, no sensitivity to θ_i , θ_j

ϕ resolution

True φ_{ee} from GEANT vs reconstructed φ_{ee}
 (LEFT) φ_{ee} in MDST_VEE2_DAUGHTERS is very distorted
 (CENTER) Pivot moved to nearby SVD plane ⇒ better!
 (RIGHT) Pivot moved to true vertex (ideal) ⇒ ~1/3 of events

Room for improvement: e.g., using fit χ^2 or SVD hit info

Toy MC (5 ab^{-1})

Similar toy MC for $A_R \sim A_L$

- Even with a perfect detector, $\sim 2\sigma$ effect (LEFT)
- Statistical fluctuation can easily mimic the modulation This sample (RIGHT) should not have visible effect
- Need to improve effective efficiency factor ξ with θ measurement