B_s studies at a SuperB: physics case and experimental potentialities

E.Baracchini^{1,2}, M.Bona³, F.Ferroni^{1,2}, G.Isidori^{2,4}, G.Martinelli^{1,2}, M.Pierini⁵, G.Piredda^{1,2}, F.Renga^{1,2}, A.Stocchi⁶

Outline

- Where we stand:
 - The Unitarity Triangle (UT) in the SM picture;
 - The UT and New Physics (NP);
- Experimental Challenges @ Y(5S);
- Opportunities @ Y(5S):
 - Analyses: some example;
 - Simulations' results;
- Physics Reach:
 - ⇒Impact on the UT analysis.

Where we stand

3

The UT in the SM picture

- The B-factories' legacy at present:
 - Good knowledge of the SM free parameters;
 - Consistency of UT and SM picture;
 - No deviations from the SM yet;
- Most likely, NP effects in B_d mixing too small to be measured.
- The LHC era:
 - UT precision measurements from LHCb;
 - Do we really need for new machines to improve the $\overline{\rho}$ and $\overline{\eta}$ determination?

Main motivation for new machines only to look for NP effects (HOW? WHERE?)

The UT and NP

MODEL INDEPENDENT

- The abundance of experimental informations allows to determine the UT and the NP parameters simultaneously;
- SM expectation clean and limited only by computational power (e.g. lattice QCD);

WHERE:

$\mathbf{b} \rightarrow \mathbf{d}$ & Rare Decays

- Many precision measurement already available.
- Super-B factory can provide a lot of precision measurement:
 - Physics of Flavour very difficult with hadronic machines!!!

BUT...

- At present:
 - No evidence for NP effects;
 - Strong constraints for NP phases in the b \rightarrow d sector;
- In this sector the present results strongly favor *Minimal Flavour Violation (MFV)* (see later):

6

- mixing process insensitive to NP;

WHERE: $\mathbf{b} \rightarrow \mathbf{s}$

- Large NP effect not yet ruled out in the b \rightarrow s sector.
- A traditional B-factory (at high statistics) can study:
 - Radiative penguins (B \rightarrow K* γ ,...);
 - CP asymmetries in charmless hadronic B decays.

known experimental techniques and high statistics BUT LARGE THEORETICAL UNCERTAINTIES w.r.t. the experimental reach

- A new approach constraining the Bs mixing phase:
 - lifetime difference $\Delta\Gamma_{\rm s}\text{;}$
 - CP asymmetry in mixing (A_{SL}) ;

Running at the $\Upsilon(5S)$ resonance!

Experimental Challenges

8

Y(5S) Production & Decays

References: CLEO (hep-ex/0607080) & Belle (hep-ex/0605110)

Event reconstruction

- Reconstruction techniques inherited from current B-factories:
 - We don't reconstruct the additional particles (π, γ) produced in the $\Upsilon(5S)$ decay chain;
 - separation of different components using kinematic variables.

Event reconstruction

3 SCENARIOS...

INFN

Event reconstruction

 $BB\pi$ vs. BB SEPARATION

CAVEAT: the BB π background can be important in final states with an odd number of s quarks (K* γ , K π , etc.):

- B_s decays CKM suppressed w.r.t. B_d decays;
- B_s decays (sometimes) suppressed by dynamic (penguins or annihilation vs tree).

12

NOTE: Only UL for the BB π BR – We use the UL (worst case).

- B pairs at the Y(5S) mainly produced in association with photons;
- What about the coherence of the B pairs?
- It can be shown (paper in preparation) that:
 - In the B_{s,d}*B_{s,d}* case and in the B_{s,d}B_{s,d} case the final pair is in an antisymmetric state —> the time evolution of the B pair is the same than at the Y(4S);

- B_{s,d}*B_{s,d} the state is symmetric -> different time evolution;
- The coherence in the B_{s,d}*B_{s,d}* case and the possibility to isolate this component using kinematic variables allows to take into account time dependent analysis (see later).

Opportunities @ $\Upsilon(5S)$

INFN

14

The Method

- We assume:
 - The same detector performances of BaBar;
 - SU(3) symmetry to estimate unknown B_s Branching Ratios;
 - Same qq background shapes than for Y(4S) events;
 - full detector simulator to extract the signal shapes;
- We scale the number of signal and background events to take into account:
 - Different luminosities;
 - Y(5S) production cross section (~ 1/3 w.r.t. Y(4S));

- Y(5S) branching fractions;
- We perform a set of Toy Experiments to estimate the errors on the interesting quantities;

Opportunities @ $\Upsilon(5S)$ 1 - Looking for a NP phase

INFN

16

Semileptonic Asymmetry

• \widetilde{B}_d sector:

- Current experimental sensitivity cannot bound CKM in the SM;
- Bounds on NP parameter space;

• B_d - B_s admixture:

- measurements from D0 (dimuons charge asymm.);
- A_{CH} sensitive to NP effects;

Experimental precision at Tevatron is not expected to improve

Super-B @ Y(5S) can access A_{CH} and eventually A^{s,d} if Bd/Bs separation is possible

Semileptonic Asymmetry

DILEPTONS

* but different admixture w.r.t. D0 due to different production factors

- Counting dileptons pairs:
 - separation of signal and background trough time evolution;
 - Possibility to access A_{CH} (combined Bs-Bd asymmetry *);
 - Possibility to access both A^{s,d} (Bs-Bd separation trough time evolution);
 - crossing-background (bkg from Bs to Bd and vice versa);

Lifetime Difference $\Delta\Gamma$

$$\Delta \Gamma_{\rm s} = \Gamma_{\rm L} - \Gamma_{\rm H}$$

$$\begin{split} \frac{\Delta\Gamma_q}{\Delta m_q} &= -2\frac{\kappa}{C_{B_q}} \left\{ \cos\left(2\phi_{B_q}\right) \left(n_1 + \frac{n_6 B_2 + n_{11}}{B_1}\right) - \frac{\cos\left(\phi_q^{\rm SM} + 2\phi_{B_q}\right)}{R_t^q} \left(n_2 + \frac{n_7 B_2 + n_{12}}{B_1}\right) + \frac{\cos\left(2(\phi_q^{\rm SM} + \phi_{B_q})\right)}{R_t^{q^2}} \right) \right\} \\ &\left(n_3 + \frac{n_8 B_2 + n_{13}}{B_1}\right) + \cos\left(\phi_q^{\rm Pen} + 2\phi_{B_q}\right) C_q^{\rm Pen} \left(n_4 + n_9 \frac{B_2}{B_1}\right) - \cos\left(\phi_q^{\rm SM} + \phi_q^{\rm Pen} + 2\phi_{B_q}\right) \frac{C_q^{\rm Pen}}{R_t^q} \left(n_5 + n_{10} \frac{B_2}{B_1}\right) \right\} \quad \end{split}$$

- Sensitive to NP phase;
- Several experimental methods suggested to access $\Delta\Gamma_{s}$, $\Delta\Gamma_{s}\cos(\phi)$, $\Delta\gamma_{s}\cos^{2}(\phi)$

Dighe et al. hep-ph/9511363

Grossman hep-ph/9603244

Dighe et al. hep-ph/9804253

Dunietz et al. hep-ph/0012219

20

• We considered the method that use the Angular Distribution in $B_s \rightarrow J/\psi \phi$ decays

IN THE STANDARD MODEL... • CPV in the B_s mixing negligible, B_H = B_{CP+}, B_L = B_{CP-}, so: $\frac{d\Gamma(B \to f_{CP-odd})}{dt} \propto e^{-\Gamma_L t} \quad \frac{d\Gamma(B \to f_{CP-even})}{dt} \propto e^{-\Gamma_H t}$ • (J/ ψ ϕ)_{odd} and (J/ ψ ϕ)_{even} can be separated trough ANGULAR ANALYSIS;

Lifetime Difference $\Delta\Gamma$

WITH A NP PHASE...

• NP phase modify the time & angular PDF in such a way that this analysis can access BOTH $\Delta\Gamma$ AND THE NEW PHASE...

$$\frac{d^{4}\mathcal{P}(\vec{\rho},t)}{d\vec{\rho}dt} = [\dots\sin(\phi_{\rm CKM})]e^{-\Gamma_{L}t} + [\dots\sin(\phi_{\rm CKM})]e^{-\Gamma_{H}t}$$

...where $\phi_{\rm CKM}$ is the CP violating weak phase ($\phi_{\rm CKM}$ = $\beta_{\rm s}$ + $\phi_{\rm Bs}$) SM + NP

Lifetime Difference $\Delta\Gamma$

RESULTS

Opportunities @ Y(5S) 2 - Bounds on CKM parameters

INFN

23

V_{td}/V_{ts}

$\gamma from K\pi\pi$

Ciuchini et al. (hep-ph/0602207)

• $B_s \rightarrow K\pi\pi$ Dalitz analysis can access the amplitudes:

$$A_s^{K^*\pi} = A(B_s \to K^{*-}\pi^+) + \sqrt{2}A(B_s \to \bar{K}^{*0}\pi^0)$$

= $-V_{ub}^*V_{ud}(E_1 + E_2),$
 $\bar{A}_s^{K^*\pi} = A(\bar{B}_s \to K^{*+}\pi^-) + \sqrt{2}A(\bar{B}_s \to K^{*0}\pi^0)$
= $-V_{ub}V_{ud}^*(E_1 + E_2),$

• γ from the ratio:

$$R_d = \frac{\bar{A}_s^{K^*\pi}}{A_s^{K^*\pi}} = \frac{V_{ub}V_{ud}^*}{V_{ub}^*V_{ud}} = e^{-2i\gamma}$$

- NP can generate a different result w.r.t. the tree level estimate of γ;
- in a Super-B factory, better π° resolution than LHCb
- relative phase between B and B amplitudes needed (TD or LHCb)

Opportunities @ Y(5S) 3 - Constraining NP models

INFN

 In the b → d sector the present results strongly favor Minimal Flavour Violation (MFV):

G.Isidori, Heavy Quarks &	Λ_F	Λ (~ TeV)	
Leptons 2006	breaking of the <i>flavour symmetry</i> which gives origin to the Y	flavour-blind dynamics [non-SM degrees of freedom stabilizing the Higgs potential]	SM degrees of freedom

- All FCNC amplitudes with the same CKM structure as in the SM;
- No NP phases;
- NP observable only in BR shift.
- MFV scenarios already constrained by b \rightarrow s γ and b \rightarrow sll;
- Need for high statistics to investigate MFV in RARE LEPTONIC and RADIATIVE decays;

for NP effects in a MFV scenario:

$$\mathcal{B}(B_s \to \mu^+ \mu^-)\Big|_{\rm MSSM} \approx 3 \times 10^{-6} \frac{r^6}{\left(\frac{2}{3} + \frac{1}{3}r\right)^4} \left(\frac{200 \text{ GeV}}{M_A}\right)^4 \left(\frac{\mu A f(x_{\mu L}, x_{RL})}{M_{\tilde{t}_L}^2}\right)^2 \quad (r = \tan\beta/50.)$$

- Deviations of the BR from the SM (~ $3.5*10^{-9}$) are possible in a MFV scenario, but a strong enhancement is already ruled out by b \rightarrow s γ and b \rightarrow sll measurements;
 - An observation of the BR above the SM value will rule out SM & MFV
 - An observation of the BR below the SM prediction will strongly confirm MFV

And and	
ST. D. W. N. S.	

This is the worst case w.r.t. hadronic machines

Bs

• Simulation with SM BR ~ 3.5×10^{-9} and NP (BR = $10 \times SM$)

μμ

$B_s \rightarrow \mu\mu$

... realistic improvements on the detector performances can turn into important improvements in the result.

31

- Important probe for NP:
 - Branching ratio SM expectation = $(0.5 1.0) * 10^{-6}$;
 - NP can enhance the BR up to two orders of magnitude;
 - Bounds on several models, golden mode in a couple of scenarios.

33

B_s

Opportunities @ Y(5S) 4 - What about Time Dependent analyses?

34

- Main Question: Which ∆t resolution do we need to be sensitive to TD-related quantities (S and C)?
 - New simulations confirm the results we presented at the II Super-B workshop in Frascati (March '06).

Time Dependent analyses

- $\sigma_{A+} = 0.1 \text{ ps:}$ what does it mean?
 - $\sigma_{\Delta t} = \sigma_{\Delta z} / \beta \gamma$.
 - Current BaBar Resolution ~ 0.7ps with $\beta\gamma$ = 0.56;
- Conclusion: B_s TD analyses unfeasible in a B-factory;

36

Physics Reach (and a Rich Physics!)

Constraints on NP

- Large NP phases in B_d mixing mainly ruled out \rightarrow look for NP phases in B_s mixing;
- Y(5S) offers the possibility to investigate both Bd and Bs decays - we can:
 - look for NP phases in B_s mixing;
 - add independent constraints on CKM parameters;
 - bound different NP scenarios;
- Sensitivity on several physical quantities has been shown;

39

Significant results even at not too high statistic;

Backup slides

γ from Time Dependent analysis

- TD analysis can provide additional determinations of CKM parameters;
- In the B_s sector, at a B-factory, this kind of analysis is usually affected by smaller theoretical uncertainties w.r.t. B_d sector or hadronic machines;

• The most promising case:

$$B_s \rightarrow K^+ K^- \& B_s \rightarrow K^0 \overline{K^0}$$
In the RGI formalism:

$$\mathcal{A}(B_s \rightarrow K^0 \overline{K^0}) = - V_{us} V_{ub}^* P^{\text{GIM}} - V_{ts} V_{tb}^* P$$

$$\mathcal{A}(B_s \rightarrow K^+ K^-) = - V_{us} V_{ub}^* \left(E_1 + A_2 - P^{\text{GIM}}\right) + V_{ts} V_{tb}^* P$$
6 exp. measurements (BR, S and C for each decay)
7 unknown quant. (γ + 3 compl. P^{GIM} , P, E1+A2)
FIT FOR

4]

1 arbitrary phase

What about LHC?

Bs \rightarrow $\mu\mu$ (Super-B: Nsig = 2.5, Nbkg = 3500)

	1 year	$B_s \rightarrow \mu^+ \mu^-$ signal (SM)	b→µ, b→µ background	Inclusive bb background	Other backgrounds
LHCb	2 fb ⁻¹	30	< 100	< 7500	
ATLAS	10 fb ⁻¹	7	< 20		
CMS (1999)	10 fb ⁻¹	7	< 1		

Bs \rightarrow J/ $\psi \phi$ for $\Delta \Gamma$ and sin(ϕ)

 Expected sensitivity: (at Δm_s = 20 ps⁻¹)
 ✓ LHCb: 125k Bs→J/ψφ signal events/year
 → σ_{stat}(sin φ_s)~0.031, σ_{stat}(ΔΓ_s/Γ_s)~ 0.011 /(1year, 2fb⁻¹)
 → σ_{stat}(sin φ_s)~0.013 after first 5 years, adding pure CP modes like J/ψη, J/ψη' (small improvement)
 ✓ ATLAS: similar event rate as LHCb but less sensitive → σ_{stat}(sin φ_s)~0.08 (1year, 10fb⁻¹)
 ✓ CMS: > 50k events/year, sensitivity study ongoing

Exploiting ∆m_s sensitivity (TD analisys)

What about LHC?

Bs $\rightarrow \phi \gamma$

In 1 year LHCb expects triggered and reconstructed:
35k events $B^0 \rightarrow K^{0*}(K^+\pi^-) \gamma$; S/B>1.4
9.4k events $B_e \rightarrow \phi (K^+K^+) \gamma$; S/B>0.4

ATLAS expected signal events/year:		
$B_d \rightarrow K^{*0} \gamma$:	~3.3k ev. ; S/ $\sqrt{BG} > 5$	
$B_s \rightarrow \phi \gamma$:	~1.1k ev. ;S/\sqrt{BG} > 7	

43

We studied Bs $\rightarrow \phi \gamma$ and found: 7.9k events and S/B = 1.9; S/sqrt(B) > 100

Bounds on NP size and phase

INFN