Recent developments of the silicon detector

将来計画委員会勉強会 『測定器開発フロンティア勉強会』 2021/08/27

1

KEK, IPNS, Manabu Togawa

Silicon detector for collider experiments

- Silicon tracker play an impotent role for recent collider experiment
 - Long life particle tagging by looking at the displacement.
 - Find vertex point. -> Separation of vertex points.

The experimental challenges

- Very high luminosity environment.
 - Not only vertex separation, but also radiation hardness.
- More precise measurement
 - Particle Flow Calorimetry

Particle Flow Calorimetry (ILC)

The experimental challenges

• ASIC, Links, Mechanics, Software are also important.

Silicon sensor type

- Sensor and ASIC can be designed and processed separately.
- Well separation btw Sensor and ASIC, No cross talk.
- Bump bonding limits pixel size and total thickness

- In principle, everything is better since circuit is direct connected to sensor
 - Low noise, high speed, Low power

Material budget

- Low cost (No bonding process)
- Small pixel size, Thinner
- Only few vender have processed.

Pixel size limitation

•

Planar sensor

7

- "Traditional type" silicon sensor
 - Depletion layer is increasing with bias voltage in thickness direction.
- This talk mainly focused on the pixel type.

Planner sensor Hybrid (Sensor + ASIC) : ATLAS pixel

(c d

ATLAS ITk pixel

• Connection each pixels by metal bumps

lybrid

Planner sensor Hybrid (Sensor + ASIC) : ATLAS pixel

Hybrid

Radiation hardness

Radiation hardness Requirement for HL-LHC

- Instantaneous luminosity
 - $5 \sim 7 \times 10^{34} / \text{cm}^{-2} \text{s}^{-1}$
 - ~200 events / crossing
- Rad. damage (1 MeV $n_{eq.}/cm^2$) :
 - Inner : $r=3.7 \text{ cm} : \sim 2x10^{16}$
 - Mid. : $r=7.5 \text{ cm} : \sim 6x10^{15}$
 - Outer : $r=31 \text{ cm} : \sim 1 \times 10^{15}$
- $1 \times 10^{16} (1 \text{ MeV } n_{eq.}/\text{cm}^2)$
 - TID ~ 7 MGy @ pp collision

Radiation hardness

Silicon detector toward the HL-LHC

Sensor

- n-in-p type: No type inversion
 - Full depletion has been raised due to the increasing of charge carrier.
 - $\sim 600 \text{ V}$ for 150 um thick planer @ 5x10¹⁵ (1 MeV n_{eq.}/cm²)
 - Charge collection efficiency has been reduced due to the defect increasing

ASIC

- New Circuit design (RD53 group)
 - Redundant circuit to prevent SEE
 - Low noise to keep efficiency

Low efficiency at border of pixels. -> Solved

3D sensor

Values are in case of ATLAS inner pixel

- In case of 100 um thick sensor,
 - Drift length is determined by the electrode pitch, 50 um
 - Depletion length \propto sqrt(V) -> V reduces 1/4 than that of planer.
 - -> Operational with high radiation damage

CMOS sensor, two type

(a) Large fill-factor

- :) HV is possible
 - Uniform field, short drift distance
- :(Large inter well capacitance, Cpw (btw pw and deep nwell)
 - Bad noise, speed, power and cross talk...

- :) Very small resistance
 - Good noise, speed, power
- :(Very small bias voltage
 - Small depletion area
 - Most of e/h are collected by diffusion.

STAR @ RHIC ALICE @ LHC

Mu3e @ PSI More details are summarized in Heinz's talk at https://kds.kek.jp/event/33154/

SOI (Silicon On Insulator)

Middle Si

- Separation of circuit and sensor layers by insulator
- Optimize each layers ideally
 - high resistance on sensor and low on circuit

Spatial resolution

- FPIX2 is the best record
 - 8 µm sq. pixels (128 x 128)
 - Sensitive area 1 mm sq.
 - Rolling shutter readout
 - 8 line parallel readout.
 - 1 ms frame time.

PoS, Vetex2017 (2018) 035

DEPFET

NIM A 831 (2016) 85-87

- DEPFET (Depleted p-channel FET)
 - Stored charge under the FET structure

Belle II

Timing resolution

LGAD

- Low Gain Avalanche Detector
- Multiply with low gain (~10) in thin gain layer
 - Fast rise time, Increase S/N
- Reached $\sim 30 \text{ ps at few mm}^2 \text{ size sensor}$
- Limitation :
 - Weighting field uniformity -> Favor large pixels
 - Radiation is OK up to 10¹⁵

HGTD detector for HL-LHC (1.3x1.3 mm² pixel)

More detailed talk will be on RD platform workshop at 9/22 (Wed.) by Koji Nakamura <u>https://kds.kek.jp/event/38615/</u>

The experimental challenges toward the future High precision High Energy pp (FCC/HE-LHC) e+e⁻ (e.g. ILC) 5 um Spacial resolution Few um pile-up (20x20 pixels) few 10 ps Timing few 10 ps HLx10 Material budget < 0.1% Radiation hardness 100 MGy Data rate, Low power

- ASIC, Links, Mechanics, Software are also important.
- It is very challenging to go next generation of energy frontier.

KEK RD platform

- Start at 2019
 - <u>https://rd.kek.jp/platform/platform_index.html</u>
- Group B : silicon detector
 - <u>https://research.kek.jp/people/togawa/RD-platform-Si/</u>

Silicon strip detector

APV : Originally developed for the CMS experiment

- First ASIC development in Japan!
- SliT128

ASIC Development

素粒子原子核研究所

宇宙をひもとく研究所

You f 🎔 🗹

日本初!エレクトロニクスシステムグループとミュー オンg-2/EDM実験グループが純国産シリコンスト リップ検出器用集積回路の開発に成功

開発した集積回路(赤枠内)。1円玉の直径の半分ほど(1辺約1cm)と非常に小さいです。

22

https://www2.kek.jp/ipns/ja/ post/2020/03/20200309/

• Discussion about "production" : https://kds.kek.jp/event/33450/

New material

• New characteristic beyond silicon !

Wide-gap semiconductor

- Diamond, SiC, GaN..
- Tight binding is essentially radiation hard (bulk damage)
- Leakage current is significantly low
 - Can room temperature operation after radiation damage ?

More detailed talk will be on RD platform workshop at 9/22 (Wed.) by Hajime Nishiguchi <u>https://</u> <u>kds.kek.jp/event/38615/</u> Recovery type

CIGS (Cu(In,Ga)Se₂)

Annealing by sun light (1 Sun, 95°C)

70 MeV proton @CYRIC Single alpha detection

Slide @ KEK RD silicon 24

Conclusion

- Silicon tracker play an impotent role for recent collider experiment
- Many technologies has been developed for experimental requirements
 - Hybrid type : Planer, 3D
 - Monolithic type : CMOS, SOI
 - Very precise timing detector : LGAD
- KEK RD platform, Group B, has started at 2019.
 - Many activities are on going.
 - Please join if you are interested in the semiconductor detector !
 - Next RD platform workshop at 9/22 (Wed.)
 - https://kds.kek.jp/event/38615/

Backup

Radiation damage

- TID (Total Ionization Doze) : Interaction with electron
 - Energy loss by ionization. Charge is built up at border.
 - Charged particles : electron (photon), proton ..
 - Unit : Rad, Gy
- NIEL (Non Ionization Energy Loss) : Interaction with nuclei
 - Kick-out effect of nuclei. Lattice defect is increased.
 - Heavy particles : neutron, proton ..
 - Unit : 1 MeV n_{eq} / cm^2

SOI : More circuit.. 3D vertical integration

Lower Tier

- For SOFIT v.4
- Upper and Lower Tier chips are produced in a same wafer and bonded chip to chip.

SOI : More circuit.. 3D vertical integration

- For SOFIT v.4
- Upper and Lower Tier chips are produced in a same wafer and bonded chip to chip.

5.0kV x15.0k SE(M

SOFIST

	MX1850	MX2040	MX2166	
SOFIST	ver.1	ver.2	ver.3	ver.4 (3D)
				Upper Upper Upper
Chip Size (mm ²)	2.9 × 2.9	4.45 × 4.45	6 × 6	4.45 × 4.45
Pixel Size (μm^2)	20 × 20	25 × 25	30 × 30	20 × 20
Pixel Array	50 × 50	64 × 64 (Time Stamp) 16 × 64 (Analog Signal)	128 × 128	104 × 104
Functions (Pixel)	Pre. Amplifier (CSA) Analog signal memory (2 hits)	Pre. Amplifier (CSA) Comparator (Chopper inverter) Shift register (DFF × 2) Analog signal memory (2 hits) or Time stamp memory (2 hits)	Pre. Amplifier (CSA) Comparator (Chopper inverter) Shift register (DFF × 3) Analog signal memory (3 hits) Time stamp memory (3 hits)	Pre. Amplifier (CSA) Comparator (Chopper inverter) Shift register (DFF × 3) Analog signal memory (3 hits) Time stamp memory (3 hits)
Functions (On Chip)	Column ADC (8 bit)	Column ADC (8 bit) Zero-suppression logic	Column ADC (8 bit)	Column ADC (8 bit)
Wafer	FZ n -type (Single SOI)	Czp-type (Double SOI)	FZp-type (Double SOI)	FZp-type (Double SOI)
Wafer Resistivity (kΩ·cm)	2 ≤	1 ≤	3 - 10	3 - 10
Status	Delivered (Dec. 2015) Under evaluation	Delivered (Jan. 2017)	Submitted (Jun. 2017)	Submitted (Jun. 2017)

2017/07/03

19th iWoRiD, Krakow, Poland

Timing resolution TimeSPOT (3D)

100

90

70

60

70

50

30

40

60

Electron Ramo-map @ 140 V bias nduceo time resolution, σ_{t}^{Si} [ns] 0.0 a [ns] 0.01531 ± 0.0006479 current b [ns mV] 0.4973 ± 0.01661 0.03 0.025 $\widehat{\geq}$ 70 100 X (μm) Electron Ramo-map @ 140 V bias 0.02 0.9 0.9 0.8 0.0 0.7 0.7 0.015 0.6 0.5 0.01<u>L</u> 20 80 30 40 50 60 70 90 0.4 Amplitude [mV] 0.3 0.2 Achieved $\sim 20 \text{ ps} !$ 50 80 X (μm)

with test structure

arXiv:2004.10881

Ramo potential

Trench shape electrode

60

70

Radiation hardness

Radiation damage on ASIC : Single Event Effect (SEE)

Large current by the secondary particles flips bit on memory.

Single Event Upset

Single Event Transient

Unknown behavior of ASIC and FPGA by reprograming

CMOS : Modified small fill factor for ALICE ITS

- Add new n-layer between sensor and circuit layer.
 - Uniform depletion

CMOS : Modified small fill factor for ALICE ITS

- Good charge collection and also timing !
 - Not so much changed after irradiation up to 1×10^{15} (1 MeV $n_{eq.}/cm^2$)
- Different modified structures in terms of rad. hard have been tried.
 - See <u>Heinz Pernegger' talk</u>.