STATUS OF THE CMD-3

G. P. Razuvaev on behalf of the CMD-3 collaboration

BUDKER INSTITUTE OF NUCLEAR PHYSICS NOVOSIBIRSK STATE UNIVERSITY

G-2 Theory Initiative Meeting June 28 – Jule 2, 2021

VEPP-2000

	Parameters at 1 GeV	
	Design	Achieved
Circumference	24.388 m	
Beam energy, MeV	150–1000	160 - 1005
N of bunches	1 imes 1	
N of particles / bunch	$1 imes 10^{11}$	$0.9 imes10^{11}$
Luminosity, $cm^{-2}s^{-1}$	$1 imes 10^{32}$	$0.5 imes10^{32}$

- Round beams concept
- $\bullet~13\,T$ solenoids for FF
- $E_{\rm beam}$ controled by Compton back scat. ($\sigma_{\sqrt{s}} = 0.1\,{\rm MeV}$)

2 / 29

CMD-3 detector

- $\sigma_{
 ho arphi} \sim 100 \, \mu {
 m m}, \ \sigma_z \sim 2 {
 m -}3 \, {
 m mm}$
- Combined EM-calorimeter: $\sigma_E \sim$ 3–10 %, $\sigma_\Omega \sim$ 5 mrad

G-2 ThInit, June 28, 2021 3 / 29

VEPP-2000 and CMD-3

Luminosity

2017–2019: big improvement in luminosity, still way to go to the project parameters and collection of $1 \, \text{fb}^{-1}$.

Overall collected luminosity is 0.32 fb^{-1} . Measure luminosity by $e^+e^- \rightarrow e^+e^-$, $\gamma\gamma$.

Exclusive channels $e^+e^- \rightarrow$ hadrons

Signature	Final state (preliminary, published)
2 charged	$\pi^+\pi^-$, K^+K^- , K_SK_L , $par{p}$
2 charged + γ s	$\pi^+\pi^-\gamma$, $\pi^+\pi^-\pi^0$, $\pi^+\pi^-2\pi^0$,
	$\pi^{+}\pi^{-}3\pi^{0}$, $\pi^{+}\pi^{-}4\pi^{0}$, $\pi^{+}\pi^{-}\eta$,
	$\pi^{+}\pi^{-}\pi^{0}\eta$, $\pi^{+}\pi^{-}2\pi^{0}\eta$, $K^{+}K^{-}\pi^{0}$,
	$K^+K^-2\pi^0$, $K^+K^-\eta$, $K_SK_L\pi^0$, $K_SK_L\eta$
4 charged	$2(\pi^+\pi^-)$, $K^+K^-\pi^+\pi^-$, $K_SK^\pm\pi^\mp$
4 charged + γ s	$2(\pi^+\pi^-)\pi^0$, $2(\pi^+\pi^-\pi^0)$, $\pi^+\pi^-\eta$,
	$\pi^+\pi^-\omega$, 2 $(\pi^+\pi^-)\eta$, K $^+K^-\omega$,
	$K_S K^{\pm} \pi^{\mp} \pi^0$
6 charged	$3(\pi^{+}\pi^{-}), K_{S}K_{S}\pi^{+}\pi^{-}$
6 charged + γ s	$3(\pi^+\pi^-)\pi^0$
Neutral	$\pi^{0}\gamma$, $2\pi^{0}\gamma$, $3\pi^{0}\gamma$, $\eta\gamma$, $\pi^{0}\eta\gamma$, $2\pi^{0}\eta\gamma$
Other	$nar{n},\pi^0e^+e^-,\eta e^+e^-$
Rare decays	η' , $D^*(2007)^0$

Published, but not included in WP2020

		\sqrt{s} , GeV	KNT [<mark>20</mark>]	DHMZ [<mark>20</mark>]
$K_S K_S \pi^+ \pi^-$	PLB 804 (2020) 135380	1.6 - 2.0	no	no
$3(\pi^+\pi^-)\pi^0$	PLB 792 (2019) 419-423	1.6 - 2.0	no	yes
$\eta \pi^+ \pi^-$	JHEP 01 (2020) 112	1.1 - 2.0	no	no
${\cal K}^+{\cal K}^-\eta$	PLB 798 (2019) 134946	1.59 - 2.007	no	yes

 $\pi^+\pi^-$

$\pi^+\pi^-$ below ϕ

Analysis strategy

- 2 tracks with $1 \le heta \le \pi 1$
- Separation of $e/\mu/\pi/{\rm cosmic}$
 - $\mu^+\mu^-$ can be fixed from QED
 - Two independent approaches:
 - Separation by vertex constrained momenta
 - Separation by energy depositions
- Binned likelihood minimisation:

$$-\ln L = -\sum_{\text{bins}} n_i \ln \left[\sum_{\substack{X=ee,\\ \mu\mu, \pi\pi,\\ \text{bg}}} N_X f_X(p^+, p^-)\right] + \sum_X N_X$$

Extracting data and outlook

Separation by momentum

- Input:
 - Take e^+e^- , $\mu^+\mu^-$, $\pi^+\pi^-$ and $\pi^+\pi^-\pi^0$ PDFs from MC generators smeared by the detector resolution.
 - Cosmic PDF from data
- 35 free parameters

Separation by energy deposition in LXe

- No need for PDFs from MC
- Energy deposition includes FSR $(\Delta \Omega < 0.4)$
- Fit data by analytical functions
- 56 free parameters

The analysis on its final stages. Additional local consistency checks should be fulfilled. The aim systematic uncertainty is 0.5 %.

- 2 opposite central tracks
- Suppress K^+K^-
 - $p_{\min} = \frac{1.1\sqrt{E^2 M_K^2}}{0.84E} \frac{E < 1.58M_K}{E \ge 1.58M_K} < p < 1.2E$
- Use BDT and NN to separate $e|(\mu, \pi)$, $K|\pi$ and $\mu|\pi$.
- Iterative calculation of $|F_{\pi}|$.

$$\begin{array}{l} N_{\pi\pi} = N_{low} - N_{cosm} - N_{ee} \frac{\sigma_{\mu\mu}}{\sigma_{ee}} \\ \left| F_{\pi}^{i+1} \right|^2 = \frac{N_{\pi\pi}}{N_{ee}} \times \frac{\sigma_{ee}}{\sigma_{\pi\pi}} \times \left| F_{\pi}^i \right|^2 \end{array}$$

 $\pi^+\pi^-\gamma$

- Measure $e^+e^- \rightarrow \pi^+\pi^-\gamma$
- Check the correctness of the point-like π assumption for the rad. corr. in MCGPJ (FSR)
- Dataset: $\sqrt{s} \in 660 785 \, \text{MeV}$, 8.4 pb⁻¹
- $\bullet~2$ central tracks with $+~1~\gamma$
- FSR \sim 80 %, ISR \sim 20 %
- Background: $e^+e^- \to e^+e^-\gamma, \, \mu^+\mu^-\gamma, \, \pi^+\pi^-\pi^0$
- π^{\pm} point-likeness assumption negligiably contributes to $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$

$$\pi^+\pi^-\pi^0$$
 at ω

$a_\mu^{ extsf{had, LO VP}} imes 10^{10}$	\sqrt{s}	
46.73 ± 0.94	$\leq 1.937{ m GeV}$	KNT19
$46.21 \pm 0.40 \pm 1.10 \pm 0.86$	$\leq 1.8{ m GeV}$	DHMZ20

 $\pi^+\pi^-\pi^0$ at ω

- Look for π^0 in $M_{\rm miss}(\pi^+\pi^-)$
- e^+e^- , $\mu^+\mu^-$ and $\pi^+\pi^-$ background is fixed from MC.
- Statistic 2013 (7.8 pb⁻¹)
- $\bullet\,$ Systematic uncertainty $\sim 3.1\,\%$

Further steps:

- Add 2018 data (30 pb⁻¹)
- Search for $\rho \omega$ interference
- Analysis with $\pi^0 \to \gamma \gamma$

 $\pi^{+}\pi^{-}\pi^{+}\pi^{-}$ and $\pi^{+}\pi^{-}\pi^{0}\pi^{0}$

	$a_\mu^{ m had,\ LO\ VP} imes 10^{10}$	\sqrt{s}	
	14.87 ± 0.20	$\leq 1.937{ m GeV}$	KNT19
π · π · π · π	$13.68\pm0.03\pm0.27\pm0.14$	$\leq 1.8{ m GeV}$	DHMZ20
<u>_</u> + <u>_</u> _ <u>0</u> _0	19.39 ± 0.78	$\leq 1.937{ m GeV}$	KNT19
תית תיתי	$18.03 \pm 0.06 \pm 0.48 \pm 0.26$	$\leq 1.8{ m GeV}$	DHMZ20

 $\pi^{+}\pi^{-}\pi^{+}\pi^{-}$ and $\pi^{+}\pi^{-}\pi^{0}\pi^{0}$

$4\pi^{\pm}$ for $\sqrt{s} < 1.06 \,\mathrm{GeV}$:

- Events:
 - 4 pion tracks
 - $-20 \,\mathrm{MeV} < E_{\mathrm{sys}} \sqrt{s} < 30 \,\mathrm{MeV}$
 - $|ec{p}_{
 m sys}| < 100~{
 m MeV}/c$
- Background: $\pi^+\pi^-(\pi^0 \to e^+e^-\gamma)$, $e^+e^-e^+e^-$, $e^+e^-\gamma$

$4\pi^{\pm}$ and $2\pi^{\pm}2\pi^{0}$ for $\sqrt{s} > 0.95\,{ m GeV}$:

- Events:
 - Find $\pi^+\pi^-\pi^\pm$ or $\pi^+\pi^-\pi^0$
 - Look for last π^{\mp} or π^{0}
- Amplitude analysis:
 - $\omega\pi^0$, $a_1\pi$, $\rho f_0/\sigma$, ρf_2 , $\rho^+\rho^-$, $a_2\pi$, $h_1\pi^0$ and $\pi'\pi$

$$\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}\pi^{0}$$

$$\begin{array}{c|cccc} & a_{\mu}^{\rm had, \ LO \ VP} \times 10^{10} & \sqrt{s} \\ \hline & & 1.35 \pm 0.17 & \leq 1.937 \, {\rm GeV} & {\rm KNT19} \\ & & 0.71 \pm 0.06 \pm 0.07 \pm 0.14 & < 1.8 \, {\rm GeV} & {\rm DHMZ20} \end{array}$$

 $\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}\pi^{0}$

Events:

- 4 tracks + 2 $\pi^0 \rightarrow$ 5C fit
- 4 tracks + 1 $\pi^0 \rightarrow$ 1C fit
- 3 tracks + 2 π^0 (lost in DC or out of DC) \rightarrow 2C fit
- Background: $2(\pi^+\pi^-)$, $\pi^+\pi^-\pi^0\pi^0$, $2(\pi^+\pi^-)\pi^0$, $3(\pi^+\pi^-)$, $K^+K^-\pi^+\pi^-$
- Simulation: $e^+e^- \rightarrow \omega 3\pi$, $\rho 4\pi$, $\omega \eta$, $a_o \rho$
- 2 methods of π^0 s reconstruct:
 - 1. Constrained KF with all γ permutation
 - 2. Combine γ s with $(m_{inv}(\gamma_1, \gamma_2) m_{\pi^0})^2 + (m_{inv}(\gamma_3, \gamma_4) m_{\pi^0})^2) \rightarrow \min \rightarrow 5C \text{ KF} \rightarrow \text{cut on } \chi^2$
- Find the number of π^0 in $m_{\mathrm{inv}}(\gamma,\,\gamma)$

 $KK\pi$

$a_\mu^{ extsf{had, LO VP}} imes 10^{10}$	\sqrt{s}	
2.71 ± 0.12	$\leq 1.937{ m GeV}$	KNT19
$2.45 \pm 0.05 \pm 0.10 \pm 0.06$	$\leq 1.8{ m GeV}$	DHMZ20

$KK\pi$

• $K^+K^-\pi^0$

- 2 tracks + 2 γ s w/ $p_{\rm sys}$ < 160 MeV/c & $|E_{\rm sys}-\sqrt{s}|$ < 180 MeV
- 4C KF + BDT to suppress BG
- Find π^0 in $m_{\rm inv}(\gamma\gamma)$
- Also extract $\sigma(e^+e^- \rightarrow \phi \pi^0)$
- $K_S K_L \pi^0$
 - 2 tracks + 2 γ s w/ ρ_{K_S} > 2 mm
 - 4C KF + side bands
 - Find π^0 in $m_{\rm inv}(\gamma\gamma)$
- $K_S K^{\pm} \pi^{\mp}$
 - 4 tracks w/ $\rho_{\rm KS}>2\,\rm mm$
 - 4C KF: K_SK[±]π[∓], 2(π⁺π[−])
 - Find K_S in $m_{inv}(\pi^+\pi^-)$
 - Dynamics: $e^+e^-
 ightarrow (
 ho',\,
 ho'',\,\phi')
 ightarrow K^*K$
 - Systematic uncertainty $\sim 5\,\%$

$$K^+K^-$$
 above ϕ

$a_\mu^{ m had,\ LO\ VP} imes 10^{10}$	\sqrt{s}	
23.03 ± 0.22	$\leq 1.937{ m GeV}$	KNT19
$23.08 \pm 0.20 \pm 0.33 \pm 0.21$	$\leq 1.8{ m GeV}$	DHMZ20

K^+K^- above ϕ

Status:

- 2 tracks
 - Collenearity suppress ISR
- Work with
 - $\Delta E = \sqrt{m_K^2 + p_+^2} + \ \sqrt{m_K^2 + p_-^2} + |ec{p}_+ + ec{p}_-| \sqrt{s}$
- Background: e^+e^- , $\mu^+\mu^-$, $\pi^+\pi^-$, cosmic and multihadron proc's
- Statistic: 2019 (7.8 pb⁻¹)

Further steps:

- Add 2011, 2012, 2017 and 2020
- Investigate MCGPJ
- Track and trigger efficiencies corrections
- Rad. corr. with full error matrix

- CMD-3 has collected 320 pb⁻¹ in the whole energy range $0.32 \le \sqrt{s} \le 2.0$ GeV, available at VEPP-2000, with the goal to collect $\sim 1 \text{ fb}^{-1}$ in total.
- Data analysis of exclusive modes of $e^+e^-
 ightarrow$ hadrons is in progress. Many results have been published.
- Detector upgrade: end-cap coordinate system installation in summer of 2023, next is a new Z-chamber.

New systems

Z-discs

- 2 layers of $\mu RWELL$
- $\sigma_r \sim$ 0.6 mm & $\sigma_{r arphi} \sim$ 1.2 mm
- First disc is ready
- Read-out electronics under test.
- Installation 2023–2024

Z-chamber

- 2 layers of cyl. μ RWELL
- Conceptual design is ready
- Strip pitch 1.5 mm
- $\sigma_z \sim 0.4\,\mathrm{mm}$

DC chamber

- INFN design mechanics inspired by MEG
- BINP develop ASIC for cluster counting and wires
- Work on the prototype probably start in 2022-2023

CMD-3 systems

 $\pi^{+}\pi^{-}\pi^{+}\pi^{-}$

- Events:
 - 4 pion tracks
 - $-20 \,\mathrm{MeV} < E_{\mathrm{sys}} \sqrt{s} < 30 \,\mathrm{MeV}$
 - $|ec{p}_{
 m sys}| < 100~{
 m MeV}/c$
- Background: $\pi^+\pi^-(\pi^0 \to e^+e^-\gamma)$, $e^+e^-e^+e^-$, $e^+e^-\gamma$

Plan:

- Systematics study
- Process dynamics

 $\pi^+\pi^-\pi^+\pi^-$ and $\pi^+\pi^-\pi^0\pi^0$

• Events:

- Find $\pi^+\pi^-\pi^\pm$ or $\pi^+\pi^-\pi^0$
- Look for last π^{\mp} or π^{0}
- Amplitude analysis:
 - $\omega\pi^0$, $a_1\pi$, $\rho f_0/\sigma$, ρf_2 , $\rho^+\rho^-$, $a_2\pi$, $h_1\pi^0$ and $\pi'\pi$

Plan:

- Agrement between different seasons
- $\varepsilon_{det}(sim. model)$
- Systematics study
- Process dynamics

$K^+K^-\pi^0$

Status:

• Events:

- 2 tracks $+ \ge$ photons
- $p_{\rm sys} < 160 \, {
 m MeV}/c$
- $|E_{
 m sys}-\sqrt{s}|<180\,{
 m MeV}$
- 4C KF
- Background: $\pi^{+}\pi^{-}\pi^{0}\pi^{0}$, $K_{S}K\pi$, $K_{L}K\pi$, $K^{+}K^{-}\pi^{0}\pi^{0}$, $K^{+}K^{-}\gamma$
- BDT to suppress background
- Find the number of π^0 in $m_{
 m inv}(\gamma,\,\gamma)$
- Also extract $e^+e^- \rightarrow \phi \pi^0 \rightarrow K^+K^-\pi^0$ cross section

- Improve situation with dE/dx by DC
- Cross section approximation
- Background study
- Systematics study

$K_S K_L \pi^0$

Status:

- Events:
 - 2 tracks
 - ρ_{K_S} vertex > 2 mm
 - $N_{\gamma} \geq 2$
- 4C KF
- Background: $K_S K_L(\gamma)$, $\pi^+ \pi^- \pi^0 \pi^0$, $K_S K_L \pi^0 \pi^0$
- Find the number of π^0 in $m_{\text{inv}}(\gamma, \gamma)$

Plans:

- Suppress $K_S K_L \pi^0 \pi^0$ background
- New simulation models
- Systematic study
- Process dynamics

 $K_{S}K^{\pm}\pi^{\mp}$

• Events:

- 4 tracks
- ρ_{K_S} vertex > 2 mm
- KF: $K_S K^{\pm} \pi^{\mp}$ and $\pi^+ \pi^- \pi^+ \pi^-$
- Select the spot at (E_{sys}, p_{sys})
- Background: $\pi^+\pi^-\pi^+\pi^-$
- Find the number of K_S in $m_{\rm inv}(\pi^+\pi^-)$
- Dynamics: $e^+e^-
 ightarrow (
 ho',\,
 ho'',\,\phi')
 ightarrow K^*K$
- $\bullet\,$ Systematic errors $\sim 5\,\%$

Plans:

• Finalise analysis