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Top quark properties
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‣ Why are top properties interesting? 

‣ top quark decays before it can form 
bound states 

‣ unique opportunity to study a “bare” 
quark (using the decay products) 

!

‣ heaviest elementary particle known 
(mt ~ 173 GeV) 

‣ large coupling to Higgs boson 
suggests special role in EWSB Natural SUSY and Light Stops!

•  SM hierarchy problem: Higgs mass driven toward MPlanck by 
large radiative corrections � largest contribution from top quark!

•  In SUSY: stop quark cancels top quark contribution to ΔMH
2!

•  Top squarks critical for SUSY solution to hierarchy problem!
–  “Natural” (not fine-tuned) solution requires light stop quarks!

May 28th, 2013! LHC Seminar! 3 

ΔmH
2 =

H!
H!

yt! yt! yt
2!

+ …
‣ top properties 

measurements test SM 
and probe new physics
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Top quark properties

‣ Today I’ll show just a few of the many important results from 
ATLAS and CMS at the LHC 

‣ focusing on results in      pair production from the last 1 year 

‣ top quark mass 

‣     spin correlations 

‣ production of      + vector boson 

‣ flavour changing neutral currents in      events 

!
!
‣ A complete summary can be found on the experiments’ public twiki pages: 

‣ https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults 

‣ https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP
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https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP
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LHC
‣ Proton-proton collider at 

CERN in Geneva, Switzerland 

‣ 2011:  7 TeV collision energy 

‣ 2012:  8 TeV collision energy 

‣ 2015:  restart at 13 TeV

4

1 Apr
1 M

ay
1 Ju

n
1 Ju

l
1 Aug

1 Sep
1 O

ct
1 N

ov
1 D

ec

Date (UTC)

0

5

10

15

20

25

T
o
ta

l 
In

te
g

ra
te

d
 L

u
m

in
o
s
it

y
 (
fb
¡
1
)

£ 100

Data included from 2010-03-30 11:21 to 2012-12-16 20:49 UTC 

2010, 7 TeV, 44.2 pb¡1

2011, 7 TeV, 6.1 fb¡1

2012, 8 TeV, 23.3 fb¡1

0

5

10

15

20

25

CMS Integrated Luminosity, ppDelivered luminosity



FPCP 2015 - Top quark properties - Jacob Linacre26/05/15

LHC is a top factory

‣ The LHC at 8 TeV 
produced 700 times more 
top quark pairs per hour 
than the Tevatron 

‣ 5M top pairs per 
experiment in 2012! 

!

‣ LHC is a true top factory! 

‣ study top quark with 
unprecedented precision
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Top Quark Pairs per hour at 
peak inst. luminosity

cross sections from arXiv:1303.6254: Tevatron ~7pb, LHC@7TeV ~172pb, 
LHC@8TeV ~246pb.   Peak inst. luminosity: Tevatron: ~4x1032cm-2s-1, 
LHC@7TeV: ~4x1033cm-2s-1, LHC@8TeV: ~8x1033cm-2s-1 

http://arxiv.org/abs/1303.6254


FPCP 2015 - Top quark properties - Jacob Linacre26/05/15

Top quark pair production

‣ Top quark-antiquark pairs (   ) produced via strong interaction
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tt̄

gluon fusion:  
~85% at the LHC

qq annihilation: 
~15% at the LHC
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Top quark decay
‣ Top decays via weak interaction 

‣  almost exclusively to a b-quark and a W boson 

!

!

!

!

!

!

!

!

!

‣ W boson decays to quark+antiquark (68%) or                           
lepton+neutrino (32%)

7

b

ν

l−

q

gg

q
t

W−

t
l+

t

ν

b

W+

⌫/q

`+/q̄

`�/q

⌫̄/q̄



FPCP 2015 - Top quark properties - Jacob Linacre26/05/15

tt decay channels
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fraction and 
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6% 
small branching 

fraction but small 
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‣ Decay channel categories based on how the two W bosons decay
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Top quark mass
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Top quark mass (mt)
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arxiv:1307.3536

‣ SM vacuum stability boundary coincides closely 
with measured mt 

‣ unstable when Higgs quartic coupling λ runs < 0  

‣ just a coincidence, or insight to new physics?

‣ mt important input to test SM self-consistency

Motivation 

5 

!  The top quark is special: 
-  It is the heaviest quark        

of the SM! 
!  Why is it so heavy? 
!  Does it play a special role 

in EWSB? 

-  MW related to mt & MHiggs: GFitter Coll., EPJC, 72 2005 (2012) 

Overconstrain MW, mt, and MHiggs 

" Consistency check of  the SM! 

Top quark mass in l+jets using 9.7 fb-1 of DØ data                     Oleg Brandt 04.04.2014 
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Top quark mass measurement

‣ General approach: 

!

!

!

!

!

!

!

!

!

!

‣ As a result of the calibration these measurements measure the MC mass parameter 

‣ does not precisely correspond to well-defined theoretical definition 

‣ implies additional uncertainty ~0.5 GeV when input to theory

11

6

A#standard#recipe#for#standard#measurements 
of#the#top#mass:

Prescription for top mass measurements

1 Select tt̄ events – high integrated luminosity, efficient b-tag algorithms

2 Construct estimator M
t

for top mass
3 Parametrize dN/dM

t

in terms of mMC

t

4 Perform maximum likelihood fit
Calibrate on MC, evaluate on data

,! tt̄ modeling uncertainties very important!
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Markus Seidel (UHH) Top-quark mass measurements at the LHC March 25, 2014 3 / 16

1. Select#tt#̅events#
2. Construct#observable#
3. Parametrize#observable#in#mt#using#MC#simula<on#
4. Fit#to#data,#extract#mass#

• Many#choices#of#observables:##
• Kinema<c#fits,#simple#invariant#masses,#etc.

/53%

Benjamin Stieger,	


LPCC Seminar (Dec 2014)

‣ 1) select       events 

‣ 2) construct observable sensitive to mt 

‣ 3) parametrise observable in mt using MC simulation  

‣ 4) fit to data, extract mass

tt̄
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CMS measurements (20 fb-1 8 TeV)
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Large QCD multijet background 

Lepton+jets 
Most precise channel 

Dilepton 
Very clean but 2 neutrinos 

‣ Reconstruct mt using kinematic constraints 

‣ Fit data using templates as a function of mt
reco 

‣ 2D fit including mW
reco for jet energy calibration (all-hadronic and lepton+jets)

mt = 172.1 ± 0.3 ± 0.8 GeV 
(0.5%) 

mt = 172.0 ± 0.1 ± 0.7 GeV  
(0.4%) 

mt = 172.5 ± 0.2 ± 1.4 GeV 
(0.8%) 

(stat)      (syst) (stat)      (syst) (stat)      (syst)
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‣ Reconstruct mt-sensitive variable 

‣ Fit data using templates as a function of mt-sensitive variable 

‣ 3D fit to constrain light and b jet energy calibration (lepton+jets) 

‣ Fit ratio R3/2 = mt
reco/mW

reco (all-hadronic)

ATLAS measurements (5 fb-1 7 TeV)
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mt = 175.1 ± 1.4 ± 1.2 GeV 
(1.0%)

mt = 172.3 ± 0.8 ± 1.0  GeV  
(0.7%)

mt = 173.8 ± 0.5 ± 1.3 GeV 
(0.8%)
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Combinations

‣ Reached sub-GeV precision where exact 
definition of mass parameter is very important! 

‣ Uncertainties systematics dominated 

‣ largest systematic typically from differences in 
the jet energy response for different jet flavours
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 0.64±     174.34 
(arXiv:1407.2682)Tevatron Comb.  Jul. 2014 

 0.76±     173.34 
(arXiv:1403.4427)World Comb.  Mar. 2014 

 0.91±     172.99 
(arXiv:1503.05427)ATLAS Comb. Mar. 2015 

 

-1 =4.6 fbintL
CONF-2014-053+1-jet)* t(tσ   2.1     

 2.3 ±173.7   

-1 =4.6-20.3 fbintL
Eur. Phys. J. C74 (2014) 3109) dilepton t(tσ   2.6     

 2.5 ±172.9   

 

-1 = 4.7 fbintL
arXiv:1503.05427 dilepton →  1.30 )± ( 0.54                           1.41 ±173.79 

-1 = 4.7 fbintL
arXiv:1503.05427 l+jets →  1.02 )± 0.67 ± 0.25 ± ( 0.23  1.27 ±172.33 

-1 =20.3 fbintL
CONF-2014-055single top*   2.0   )± (  0.7                              2.1  ±172.2   

-1 = 4.6 fbintL
arXiv:1409.0832all jets   1.2   )± (  1.4                              1.8  ±175.1   

 

-1 - 20.3 fb-1 = 4.6 fb
int

 summary - Mar. 2015, Ltopm

 syst.)± bJSF ± JSF ±    tot.    (stat. ±      top   m

σ 1 ±World Comb. 
stat. uncertainty

 bJSF uncertainty⊕ JSF ⊕stat. 
total uncertainty

Input to ATLAS comb.→Preliminary, *

ATLAS Preliminary

mt = 172.38±0.66 GeV  (0.4%) 
preliminary CMS combination: conservative treatment of 
systematic uncertainty correlations

mt = 172.99±0.91 GeV  (0.5%) 
This ATLAS combination only includes 7 TeV dilepton and lepton+jets
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Spin correlations
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Introduction to tt spin correlations
‣ Same and opposite helicity gluon fusion contributions impart different 

spin correlations to the top quark pairs 

!

!

!

!

!

!

!

!

‣ Same helicity contribution is dominant near threshold 

‣ Opposite helicity becomes dominant when Et >> mt (helicity conservation) 

‣ Expected net spin correlation strength of ~30% at the LHC 

‣ modified in many new physics scenarios
16
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Lepton ∆ϕ distribution
‣ In      dilepton final state, spin correlations in same-helicity gluon 

fusion give alignment in ∆ϕ  

‣ lab frame azimuthal angle between two leptons

17
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‣ Kinematically, high ∆ϕ is 
preferred because the tops are 
produced back to back 

‣ relative enhancement at low 
∆ϕ due to spin correlations 

‣ Lepton angles have excellent 
experimental resolution 

‣ ∆ϕ most precise probe of spin 
correlations (unique to LHC)

tt̄
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∆ϕ measurement
‣ Select      events in 

dilepton final state 

‣ data-driven prediction 
for dominant Z/γ∗+jets 
background 

‣ Quantify spin 
correlation strength as 
fraction “f” of SM 
expectation 

‣ template fit using 
simulated correlated 
and uncorrelated 

‣ f = 1.20 ± 0.05 ± 0.13  

‣ proof top really behaves 
like a bare quark!
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Probing SUSY with spin correlations

‣ Supersymmetric top squark pair 
production looks like     + MET 

‣ Squarks have spin-zero 

‣ daughter top quarks look similar 
to uncorrelated      events 

‣ but only ~1/6 of the      cross 
section for mstop = mt 

‣ Total cross section measurement 
also sensitive to stops 

‣ combining the two, beginning to 
have sensitivity

19

‣ ATLAS excludes        
mt < mstop <191 GeV
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ttZ and ttW
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ttZ and ttW

‣ ttZ provides first experimental 
measurement of top-Z coupling 

‣ (ttW does not measure top-W 
coupling) 

‣ ttW/Z production can be 
enhanced by new physics 

‣ composite Higgs, Z’, Little Higgs 

‣ Same 3 channels as for     but 
additional charged lepton(s) from 
W (Z) decay 

‣ look for 2ℓ, 3ℓ, 4ℓ final states with 
Z mass or same charge

21

tt̄
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ttW and ttZ measurement
‣ ATLAS: mostly cut-based analysis 

‣ CMS: multivariate approach to signal and background event 
reconstruction and discrimination 

‣ Data driven approach to estimate large non-prompt lepton background 

‣ Sensitivity still limited by statistics
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ttZ and ttW results

‣ CMS observes ttZ (6.4σ), both experiments see evidence for ttW

23

‣ Constraints on dimension-6 
operators parameterising NP 

‣ select 5 possible operators 
with small effect on inclusive 
H and      production, but 
large effect on ttW/Z  

‣ all consistent with SM

tt̄

ttW and ttZ 
measurements

ttW ttZ
Cross section Significance Cross section Significance

Theory* 
(fb)

Observed 
(fb) Expected Observed Theory* 

(fb)
Observed 

(fb) Expected Observed

ATLAS
203

300 2.3σ 3.1σ
206

150 3.4σ 3.1σ

CMS (prelim.) 382 3.5σ 4.8σ 242 5.7σ 6.4σ

*NLO xsecs from JHEP 11 (2012) 056
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Flavour changing 
neutral currents
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ℓ+

ℓ-

4

requirements are obtained from MC. The overall contribution from WZ plus ZZ and Drell–Yan
backgrounds is estimated to be 1.4 ± 0.1 (stat.) ± 0.3 (syst.) events. The expected yield from
ttW, ttZ, tbZ, and tt backgrounds is 1.7 ± 0.8 (stat.) ± 0.4 (syst.) events. The uncertainty of the
b-tagging efficiency, measured in control data samples, and the uncertainty on the top-quark
mass requirement, estimated with MC simulation, contribute to the systematic uncertainty.
The estimated background yields are summarized in Table 2 and show a good agreement with
those obtained from MC simulation. The background estimations from data are used for the
final results.
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Figure 2: Comparison between data and simulated events of the mZj (left), mWb (middle), and
2D scatter (right) distributions after the event selection prior to the top-quark mass require-
ments, which are shown as the dotted vertical lines (left, middle) and box (right). The data,
corresponding to an integrated luminosity of 19.7 fb�1, are represented by the points with er-
ror bars and the open histogram is the expected signal. The stacked solid histograms represent
the dominant backgrounds. The statistical uncertainties are not drawn. The last bin in each of
the left two plots contains all the overflow events.

Table 2: Expected number of signal t ! Zq events, background composition, and observed
events corresponding to an integrated luminosity of 19.7 fb�1 for all dilepton channels; back-
ground estimates included. The uncertainties in the background estimation include the statis-
tical and systematic components shown separately, in that order.

Process Estimation from data MC prediction
t ! Zq (B = 0.1%) — 6.4 ± 0.1 ± 1.3
WZ

1.4 ± 0.1 ± 0.3
0.9 ± 0.1 ± 0.3

ZZ < 0.1
Drell–Yan < 0.1
tt

1.7 ± 0.8 ± 0.4

0.7+1.1
�0.4 ± 1.2

ttZ 1.1 ± 0.1 ± 0.8
ttW 0.1 ± 0.1 ± 0.1
tbZ 0.3 ± 0.1 ± 0.2
Total background 3.1 ± 0.8 ± 0.8 3.2 ± 1.2 ± 1.5
Observed events 1 —

To calculate the expected upper limits, the systematic uncertainties from the dilepton trigger
efficiency, lepton selection efficiency [28], pileup modeling [34], b-jet tagging efficiency [33],
jet energy scale and missing transverse energy resolution [35] are included, with the b-jet tag-
ging efficiency being the dominant one for the background estimation. Additionally, several
sources of uncertainties in the signal yield are evaluated: the choice of PDFs, generator param-
eters, and uncertainty in the tt cross section. The major contributions come from the PDFs and

Search for FCNC in top decays
‣ Flavour changing neutral currents highly suppressed in SM 

‣ Search for     events with a FCNC decay,  t → Zq 

‣   

‣ Require two opposite-sign, isolated leptons (e or μ) consistent with            
Z-boson decay and an extra charged lepton consistent with W-boson decay 

‣ Perform counting experiment in signal region:
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and the uncertainties of the luminosity measurement, the back-
ground prediction, and the fraction of all tt̄ → Zq+Wb → ℓℓq+ℓb
events expected to be selected. The signal event yield is obtained
from the efficiency times acceptance and branching fraction for
simulated events. As B(t → Zq) is expected to be small, the pos-
sibility of both top quarks decaying via flavor changing neutral
currents is not considered.

The best observed and expected 95% CL upper limits on the
branching fraction B(t → Zq) are 0.21% and 0.40%, respectively,
obtained in the ST selection from the combined three-lepton anal-
yses. The one-sigma boundaries of the expected limit are 0.30–
0.59%. The corresponding observed and expected upper limits, and
one-sigma boundaries for the b-tag selection are 0.30%, 0.41% and
0.30–0.53%, respectively. The expected limit for the ST and b-tag
selections show that they have comparable sensitivity. The one
with slightly better expected limit is taken as the final result.

8. Summary

A search for flavor changing neutral currents in top quark de-
cays in tt̄ events produced in proton–proton collisions at

√
s =

7 TeV is presented. A sample of three-lepton events is selected
from data recorded by CMS during 2011 corresponding to an in-
tegrated luminosity of 5.0 fb−1. These events are compatible with
a pp → tt̄ → Zq + Wb → ℓℓq + ℓνb (ℓ = e,µ) topology. Since
three-lepton events originating from the SM processes are rare the
background contributions are small. No excess of events over the
SM background is observed and a B(t → Zq) branching fraction
larger than 0.21% is excluded at the 95% confidence level.
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requirements are obtained from MC. The overall contribution from WZ plus ZZ and Drell–Yan
backgrounds is estimated to be 1.4 ± 0.1 (stat.) ± 0.3 (syst.) events. The expected yield from
ttW, ttZ, tbZ, and tt backgrounds is 1.7 ± 0.8 (stat.) ± 0.4 (syst.) events. The uncertainty of the
b-tagging efficiency, measured in control data samples, and the uncertainty on the top-quark
mass requirement, estimated with MC simulation, contribute to the systematic uncertainty.
The estimated background yields are summarized in Table 2 and show a good agreement with
those obtained from MC simulation. The background estimations from data are used for the
final results.
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Figure 2: Comparison between data and simulated events of the mZj (left), mWb (middle), and
2D scatter (right) distributions after the event selection prior to the top-quark mass require-
ments, which are shown as the dotted vertical lines (left, middle) and box (right). The data,
corresponding to an integrated luminosity of 19.7 fb�1, are represented by the points with er-
ror bars and the open histogram is the expected signal. The stacked solid histograms represent
the dominant backgrounds. The statistical uncertainties are not drawn. The last bin in each of
the left two plots contains all the overflow events.

Table 2: Expected number of signal t ! Zq events, background composition, and observed
events corresponding to an integrated luminosity of 19.7 fb�1 for all dilepton channels; back-
ground estimates included. The uncertainties in the background estimation include the statis-
tical and systematic components shown separately, in that order.

Process Estimation from data MC prediction
t ! Zq (B = 0.1%) — 6.4 ± 0.1 ± 1.3
WZ

1.4 ± 0.1 ± 0.3
0.9 ± 0.1 ± 0.3

ZZ < 0.1
Drell–Yan < 0.1
tt

1.7 ± 0.8 ± 0.4

0.7+1.1
�0.4 ± 1.2

ttZ 1.1 ± 0.1 ± 0.8
ttW 0.1 ± 0.1 ± 0.1
tbZ 0.3 ± 0.1 ± 0.2
Total background 3.1 ± 0.8 ± 0.8 3.2 ± 1.2 ± 1.5
Observed events 1 —

To calculate the expected upper limits, the systematic uncertainties from the dilepton trigger
efficiency, lepton selection efficiency [28], pileup modeling [34], b-jet tagging efficiency [33],
jet energy scale and missing transverse energy resolution [35] are included, with the b-jet tag-
ging efficiency being the dominant one for the background estimation. Additionally, several
sources of uncertainties in the signal yield are evaluated: the choice of PDFs, generator param-
eters, and uncertainty in the tt cross section. The major contributions come from the PDFs and

tt̄

(B<0.05% when combined with 7 TeV)

http://arxiv.org/abs/1312.4194
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FCNH search (multileptons)
‣ Cut based analysis 

‣ look for 3ℓ or same-charge 2ℓ 
‣ (a bit like ttW final state) 

‣ Data driven approach to estimate large non-
prompt lepton background 

‣ B(t→Hc) < 0.93% (95% CL) 

‣ Flavour-violating Yukawa coupling
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Search for top quark decays via Higgs-boson-mediated
flavor changing neutral currents in pp collisions

at
p

s = 8 TeV

The CMS Collaboration

Abstract

A search for top quark decays via Higgs-boson-mediated flavor changing neutral cur-
rents pp ! tt̄ ! Hc + Wb in events containing a trilepton or same-sign dilepton is
presented. The search is performed with a data sample with an integrated luminos-
ity of 19.7 fb�1 of pp collisions at

p
s = 8TeV collected with the CMS detector at

the CERN LHC. The observed number of events agrees with the SM prediction, and
no evidence for top quark decays via Higgs-boson-mediated flavor changing neutral
currents are found. The measured 95% confidence level observed and expected up-
per limits on the t ! Hc branching fraction are 0.93% and 0.89% respectively. This
corresponds to an observed upper limit on top-charm flavor violating Higgs Yukawa

coupling of
q��lH

tc

��2 +
��lH

ct

��2 < 0.18.

2ℓ 3ℓ
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Summary and Outlook
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Summary

‣ No significant deviations seen from SM expectations in LHC 
Run 1 

‣ Mass measurement has reached remarkable precision 

‣ systematics dominated, unlikely to be surpassed quickly in Run 2 

‣ Observation of      correlated spins 

‣ probe of new physics including low-mass top squark pairs 

‣ Observation of ttZ  

‣ Run 2 statistics will allow us to measure ttZ differentially, along 
with other rare processes (ttW, ttH, ttγ) 

‣ No evidence for FCNCs

28

tt̄
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‣ Another order of magnitude increase for     pair production!
29
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cross sections from arXiv:1303.6254: Tevatron ~7pb, LHC@7TeV ~172pb, LHC@8TeV ~246pb, LHC@13TeV ~806pb	


peak inst. luminosity: Tevatron: ~4x1032cm-2s-1, LHC@7TeV: ~4x1033cm-2s-1, LHC@8TeV: ~8x1033cm-2s-1, LHC@13TeV:  ~1.3x1034cm-2s-1(estimate for 2015)

tt̄

Outlook for LHC Run 2

http://arxiv.org/abs/1303.6254
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Outlook for LHC Run 2

‣ LHC is a top quark factory, and with Run 2 will reach ultimate 
statistical precision 

‣ improvements in systematic and theoretical uncertainties will be 
essential to keep pace 

!

‣ Could new physics show up first in      in Run 2?

30
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First test 13 TeV collisions last week!
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First test 13 TeV collisions last week!
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Backup
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top mass combination systematics

‣ ATLAS

34

DRAFT

tt̄ ! lepton+jets tt̄ ! dilepton Combination
m`+jets

top [GeV] JSF bJSF mdil
top [GeV] mcomb

top [GeV] ⇢

Results 172.33 1.019 1.003 173.79 172.99
Statistics 0.75 0.003 0.008 0.54 0.48 0

– Stat. comp. (mtop) 0.23 n/a n/a 0.54
– Stat. comp. (JSF) 0.25 0.003 n/a n/a
– Stat. comp. (bJSF) 0.67 0.000 0.008 n/a

Method 0.11 ± 0.10 0.001 0.001 0.09 ± 0.07 0.07 0
Signal MC 0.22 ± 0.21 0.004 0.002 0.26 ± 0.16 0.24 +1.00
Hadronisation 0.18 ± 0.12 0.007 0.013 0.53 ± 0.09 0.34 +1.00
ISR/FSR 0.32 ± 0.06 0.017 0.007 0.47 ± 0.05 0.04 �1.00
Underlying event 0.15 ± 0.07 0.001 0.003 0.05 ± 0.05 0.06 �1.00
Colour reconnection 0.11 ± 0.07 0.001 0.002 0.14 ± 0.05 0.01 �1.00
PDF 0.25 ± 0.00 0.001 0.002 0.11 ± 0.00 0.17 +0.57
W/Z+jets norm 0.02 ± 0.00 0.000 0.000 0.01 ± 0.00 0.02 +1.00
W/Z+jets shape 0.29 ± 0.00 0.000 0.004 0.00 ± 0.00 0.16 0
NP/fake-lepton norm. 0.10 ± 0.00 0.000 0.001 0.04 ± 0.00 0.07 +1.00
NP/fake-lepton shape 0.05 ± 0.00 0.000 0.001 0.01 ± 0.00 0.03 +0.23
Jet energy scale 0.58 ± 0.11 0.018 0.009 0.75 ± 0.08 0.41 �0.23
b-Jet energy scale 0.06 ± 0.03 0.000 0.010 0.68 ± 0.02 0.34 +1.00
Jet resolution 0.22 ± 0.11 0.007 0.001 0.19 ± 0.04 0.03 �1.00
Jet e�ciency 0.12 ± 0.00 0.000 0.002 0.07 ± 0.00 0.10 +1.00
Jet vertex fraction 0.01 ± 0.00 0.000 0.000 0.00 ± 0.00 0.00 �1.00
b-Tagging 0.50 ± 0.00 0.001 0.007 0.07 ± 0.00 0.25 �0.77
Emiss

T 0.15 ± 0.04 0.000 0.001 0.04 ± 0.03 0.08 �0.15
Leptons 0.04 ± 0.00 0.001 0.001 0.13 ± 0.00 0.05 �0.34
Pile-up 0.02 ± 0.01 0.000 0.000 0.01 ± 0.00 0.01 0
Total 1.27 ± 0.33 0.027 0.024 1.41 ± 0.24 0.91 �0.07

Table 3: The measured values of mtop and the contributions of various sources to the uncertainty in the tt̄ !
lepton+jets and the tt̄ ! dilepton analyses. The corresponding uncertainties in the measured values of the JSF and
bJSF are also shown for the tt̄ ! lepton+jets analysis. The statistical uncertainties associated with these values
are typically 0.001 or smaller. The result of the mtop combination is shown in the rightmost columns, together with
the correlation (⇢) within each uncertainty group as described in Sect. 8. The symbol n/a stands for not applicable.
Values quoted as 0.00 are smaller than 0.005. Finally, the last line refers to the sum in quadrature of the statistical
and systematic uncertainty components.

Pile-up
The residual systematic uncertainty due to pile-up was assessed by determining the dependence of the
fitted top quark mass on the amount of pile-up activity, combined with uncertainties in modelling the
amount of pile-up in the sample.

7.5. Summary

The resulting sizes of all uncertainties and their sum in quadrature are given in Table 3. The total un-
certainties on m`+jets

top , JSF, bJSF and mdil
top, amount to 1.27 GeV, 0.027, 0.024 and 1.41 GeV, respectively.

Within uncertainties, the fitted values of JSF and bJSF are consistent with unity.
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CMS spin correlations

‣ Quantify the ∆ϕ 
shape with an 
asymmetry variable: 

!

!

‣ 5.2σ separation 
between data and 
uncorrelated 
prediction  

‣ Experimental proof 
the top quark 
behaves like a bare 
quark!
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‣ Same helicity 
contribution is 
dominant near 
threshold 

‣ Opposite helicity 
becomes dominant 
when Et >> mt 

‣ helicity conservation 

!

‣ Net spin correlation 
strength of ~30% (LHC)
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‣ 5.3σ observation of 
tt+γ final state
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Figure 6: Results of the combined likelihood fit using the track-isolation (pisoT ) distributions as the discriminating
variable for the electron (left) and muon (right) channels. The contribution from tt̄� events is labeled as ‘Signal’,
prompt-photon background is labeled ‘� backgrounds’, the contribution from hadrons misidentified as photons (as

estimated by the template fit) is labeled as ‘Hadron fakes’.

or electrons misidentified as photons is estimated to be
7.7%. This uncertainty includes the following: electrons
misidentified as photons (5.0%), W�+jets (5.4%), as well
as multijet + photon (1.5%), Z�+jets (1.3%), diboson
(0.4%) and single-top-quark (0.4%) processes. The vari-
ous sources of uncertainty on the background estimates
quoted above are described in the following paragraphs.

For background estimates obtained using simulation,
uncertainties on the cross-section predictions are taken
into account. Cross-section systematic uncertainties are
considered as fully correlated between the electron and
the muon channels. However, the corresponding statisti-
cal uncertainty is taken as uncorrelated. For Z�+jets,
single-top and diboson contributions the cross-section
systematic uncertainty is negligible with respect to the
statistical uncertainty.

The systematic uncertainty on the probability of an
electron to be misidentified as a photon as described in
Sec. VIIA is obtained by varying the fit functions and
the ee and e� mass windows in Z ! e

+
e

� candidate
events in data. This uncertainty is estimated to be about
10% of the background estimate and it is taken as fully
correlated between the electron channel and the muon
channel.

For the multijet + photon background described in
Sec. VIIB, the uncertainty is about 90% for the electron
channel and 60% for the muon channel. It is dominated
by the statistical uncertainty due to the small number of
events in the data samples and the systematic uncertain-
ties on the matrix method (50% for the electron channel
and 20% for the muon channel) [56]. Those uncertainties
are taken as uncorrelated between the two channels.

The systematic uncertainties on the W�+jets back-
ground are dominated by the extrapolation from the con-
trol region (dominated by W�+jets) to the signal region
due to di↵erent event topologies in the two regions in

terms of the total number of jets and the number of
heavy-flavor jets. The uncertainties due to the extrap-
olation are 27% in the electron channel and 23% in the
muon channel and are dominated by the uncertainty on
the knowledge of the flavor compositions of the W+jets
events and the overall W+jets normalization for di↵erent
jet multiplicities [56, 57]. Those uncertainties are taken
as fully correlated between the electron channel and the
muon channel. The statistical uncertainty on the number
of events in theW�+jets control region is taken as uncor-
related between the two channels. Systematic uncertain-
ties on the multijet+photon contribution to the W�+jets
event selection, as well as uncertainties on Monte Carlo
modeling of tt̄, Z+jets, diboson, and single-top processes
are taken into account [44].

IX. RESULTS

Totals of 140 and 222 tt̄� candidate data events are
observed in the electron and muon channels respectively.
The numbers of background events extracted from the
combined likelihood fit are 79 ± 26 for the electron
channel and 120 ± 39 for the muon channel. The num-
bers of tt̄� signal events are determined to be 52 ± 14
and 100± 28. The results include statisical and system-
atic uncertainties. These numbers are summarized in Ta-
ble IV, and the p

iso
T distributions are shown in Fig. 6.

Using the asymptotic properties [69] of the likelihood
model, the test statistic for the no-signal hypothesis is ex-
trapolated to the likelihood ratio value observed in data
(14.1) to determine the p-value of pobs0 = 5.73 ⇥ 10�8.
The process tt̄� in the lepton-plus-jets final state is ob-
served with a significance of 5.3� away from the no-signal
hypothesis.

The tt̄� fiducial cross section together with its total

arXiv:1502.00586



FPCP 2015 - Top quark properties - Jacob Linacre26/05/15

14 6 Probing the b-flavour content

 Wq)→ Wb)/B(t→R=B(t
0.94 0.96 0.98 1 1.02 1.04 1.06 1.08

λ
-lo

g 

0

0.5

1

1.5

2

2.5

3

combined
ee
µµ

µe

-1 L dt = 19.7 fb∫ = 8 TeV, sCMS, 

b-tagged jet multiplicity
0 1 2 3 4

Ev
en

ts

0

5000

10000

15000

20000

25000

30000

Figure 6: Variation of the log of the profile likelihood ratio (l) used to extract R from the data.
The variations observed in the combined fit and in the exclusive ee, µµ, and eµ channels, are
shown. The inset shows the inclusive b-tagged jet multiplicity distribution and the fit distribu-
tion.

If the three-generation CKM matrix is assumed to be unitary, then R = |Vtb|2 [4]. By perform-
ing the fit in terms of |Vtb|, a value of |Vtb| = 1.007 ± 0.016 (stat.+syst.) is measured. Upper
and lower endpoints of the 95% CL interval for R are extracted by using the Feldman–Cousins
(FC) frequentist approach [57]. The implementation of the FC method in ROOSTATS [58] is
used to compute the interval. All the nuisance parameters (including #b) are profiled in order
to take into account the corresponding uncertainties (statistical and systematic). If the condition
R  1 is imposed, we obtain R > 0.955 at the 95% CL. Figure 7 summarizes the expected limit
bands for 68% CL, 95% CL, and 99.7% CL, obtained from the FC method. The expected limit
bands are determined from the distribution of the profile likelihood obtained from simulated
pseudo-experiments. The upper and lower acceptance regions constructed in this procedure
are used to determine the endpoints on the allowed interval for R. In the pseudo-experiments
the expected signal and background yields are varied using Poisson probability distributions
for the statistical uncertainties and Gaussian distributions for the systematic uncertainties. By
constraining |Vtb|  1, a similar procedure is used to obtain |Vtb| > 0.975 at the 95% CL.

6.4 Indirect measurement of the top-quark total decay width

The result obtained for R can be combined with a measurement of the single-top-quark pro-
duction cross section in the t-channel to yield an indirect determination of the top-quark total
width Gt. Assuming that Âq B(t ! Wq) = 1, then R = B(t ! Wb) and

Gt =
st-ch.

B(t ! Wb)
· G(t ! Wb)

stheor.
t-ch.

, (7)

where st-ch. (stheor.
t-ch. ) is the measured (theoretical) t-channel single-top-quark cross section and

G(t ! Wb) is the top-quark partial decay width to Wb. If we assume a top-quark mass

 Ratio B(t → Wb)/B(t → Wq)
‣ Measurement in dilepton final state with 19.7 fb

-1
 8 TeV data 

‣ Construct probability model for expected b-tag multiplicities 
vs R where                                                   

‣ done separately for different event categories based on 
channel (ee, eµ, µµ) and jet multiplicity 

‣ Likelihood fit for R using observed b-tag multiplicity 
distribution
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Abstract

The ratio of the top quark branching fractions R = B(t ⇤ Wb)/B(t ⇤ Wq), where q
can be a d, s, or a b quark, is measured in the tt̄ dilepton final state. The measurement
is performed with 16.7 fb�1 of proton-proton collision data at

⌃
s=8 TeV collected with

the CMS detector. Data-driven strategies are used to constrain the main background
contributions to the data sample. By counting the number of b-jets identified per
event, the ratio of branching fractions is determined to be R = 1.023+0.036

�0.034 (stat+syst),
in good agreement with the SM prediction. A lower limit R >0.945 at 95% CL is ob-
tained after requiring that R ⇥1. Assuming a unitary, three-generation CKM matrix,
|Vtb| = 1.011+0.018

�0.017 (stat.+syst.) is measured and |Vtb| >0.972 is obtained at 95% CL.

Probability model as a function of R

log likelihood for the 3 channels

b-tag multiplicity 
distribution	


(inclusive)

12 5 Conclusions

misidentification efficiency is expected to be small (< 1%) as well the effect of other sources of
uncertainty such as pileup or luminosity.

Table 4: Summary of the systematic uncertainties affecting the measurement of R. The values
of the uncertainties are relative to the value of R obtained from the fit.

Source Uncertainty (%)
Statistical 0.4
Systematic 3.4
Individual contributions:

b-tagging efficiency 1.9
f stat
tt̄ 0.5

Mistag rate 0.9
B(W ⇤ `⇥) 0.2
DY 0.3
Fake leptons 0.1
JER 0.9
JES 1.0
Luminosity 0.2
ME-PS 1.2
Pileup 0.2
Q2 1.1
Selection efficiency 0.2
Signal 0.2
Simulation stat. 0.2
Single top cross section 0.1
f stat
correct 1.1

Extra sources of heavy flavors 0.9
Total 3.4

If the unitarity of the CKM matrix is assumed, it is possible to show that R = |Vtb|2. Re-doing
the fit for |Vtb| we measure |Vtb| = 1.011+0.018

�0.017 (stat+syst).

We also extract the upper and lower endpoints of the confidence interval on R using the
Feldman-Cousins (FC) frequentist approach based on a likelihood ratio ordering principle [27].
The implementation of the FC method in RooStats [28] is used to compute the interval. All the
nuisance parameters (including �b) are profiled in order to take into account the corresponding
uncertainties (statistical + systematic). If the condition R ⇥1 is imposed, we obtain R >0.945 at
95% C.L. Fig. 6 summarizes the limit bands obtained from the Feldman-Cousins method. The
limit bands constrain the true value of R given the observation in data Robs and result from the
distribution of the profile likelihood obtained from the pseudo-experiments used to compute
the lower endpoint of the interval on R. A similar procedure is used to obtain |Vtb| >0.972 at
95% C.L.

5 Conclusions
We have performed a measurement of R in a high-purity sample of tt dilepton events where
the main background contamination is expected to be from Drell-Yan and single top-quark
events. The b-tagging and misidentification efficiencies were derived from dijet QCD control

(using                )
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Figure 5: Expected event fractions of different b-tagged jet multiplicities in dilepton events as
a function of R.

Figure 6 shows the results obtained by maximising the profile likelihood. The combined mea-
surement of R gives R = 1.014 ± 0.003 (stat) ± 0.032 (syst), in good agreement with the SM
prediction. Fits to the individual channels give consistent results. For these, we obtain val-
ues of Ree = 0.997 ± 0.007 (stat) ± 0.035 (syst), Rµµ = 0.996 ± 0.007 (stat) ± 0.034 (syst), and
Reµ = 1.015 ± 0.003 (stat) ± 0.031 (syst) for the ee, µµ, and eµ channels, respectively. The mea-
surement in the eµ channel dominates in the final combination since the main systematic un-
certainties are fully correlated and this channel has the lowest statistical uncertainty.

The total relative uncertainty in the measurement of R is 3.2%, and is dominated by the sys-
tematic uncertainty, whose individual contributions are summarized in Table 4. The largest
contribution to the systematic uncertainty is from the b-tagging efficiency measurement. Ad-
ditional sources of uncertainty are related to the determination of the purity of the sample ( ftt)
and the fraction of correct assignments ( fcorrect) from the data; these quantities are affected by
theoretical uncertainties related to the description of tt events, which have similar impact on
the final measurement, such as µR/µF, ME-PS, signal generator, top-quark mass, and top-quark
pT. Instrumental contributions from JES and JER, modelling of the unclustered Emiss

T compo-
nent in simulation, and the contribution from the DY and misidentified-lepton backgrounds
are each estimated to contribute a relative systematic uncertainty < 0.6%. Another source of
uncertainty is due to the contribution from extra sources of heavy-flavour production, either
from gluon splitting in radiated jets or from decays in background events such as W ! cs. This
effect has been estimated in the computation of #q⇤ by assigning a conservative uncertainty of
100% to the c and b contributions. The effect of the uncertainty in the misidentification effi-
ciency is estimated to be small (< 1%), as well as other sources of uncertainty, such as pileup
and integrated luminosity. After the fit is performed no nuisance parameter is observed to
change by more than 1.5s. The most relevant systematic uncertainty (#b) is moved by ⇠ 0.5s
as a result of the fit.
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Figure 6 shows the results obtained by maximising the profile likelihood. The combined mea-
surement of R gives R = 1.014 ± 0.003 (stat) ± 0.032 (syst), in good agreement with the SM
prediction. Fits to the individual channels give consistent results. For these, we obtain val-
ues of Ree = 0.997 ± 0.007 (stat) ± 0.035 (syst), Rµµ = 0.996 ± 0.007 (stat) ± 0.034 (syst), and
Reµ = 1.015 ± 0.003 (stat) ± 0.031 (syst) for the ee, µµ, and eµ channels, respectively. The mea-
surement in the eµ channel dominates in the final combination since the main systematic un-
certainties are fully correlated and this channel has the lowest statistical uncertainty.

The total relative uncertainty in the measurement of R is 3.2%, and is dominated by the sys-
tematic uncertainty, whose individual contributions are summarized in Table 4. The largest
contribution to the systematic uncertainty is from the b-tagging efficiency measurement. Ad-
ditional sources of uncertainty are related to the determination of the purity of the sample ( ftt)
and the fraction of correct assignments ( fcorrect) from the data; these quantities are affected by
theoretical uncertainties related to the description of tt events, which have similar impact on
the final measurement, such as µR/µF, ME-PS, signal generator, top-quark mass, and top-quark
pT. Instrumental contributions from JES and JER, modelling of the unclustered Emiss

T compo-
nent in simulation, and the contribution from the DY and misidentified-lepton backgrounds
are each estimated to contribute a relative systematic uncertainty < 0.6%. Another source of
uncertainty is due to the contribution from extra sources of heavy-flavour production, either
from gluon splitting in radiated jets or from decays in background events such as W ! cs. This
effect has been estimated in the computation of #q⇤ by assigning a conservative uncertainty of
100% to the c and b contributions. The effect of the uncertainty in the misidentification effi-
ciency is estimated to be small (< 1%), as well as other sources of uncertainty, such as pileup
and integrated luminosity. After the fit is performed no nuisance parameter is observed to
change by more than 1.5s. The most relevant systematic uncertainty (#b) is moved by ⇠ 0.5s
as a result of the fit.
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Figure 6: Variation of the log of the profile likelihood ratio (l) used to extract R from the data.
The variations observed in the combined fit and in the exclusive ee, µµ, and eµ channels, are
shown. The inset shows the inclusive b-tagged jet multiplicity distribution and the fit distribu-
tion.

If the three-generation CKM matrix is assumed to be unitary, then R = |Vtb|2 [4]. By perform-
ing the fit in terms of |Vtb|, a value of |Vtb| = 1.007 ± 0.016 (stat.+syst.) is measured. Upper
and lower endpoints of the 95% CL interval for R are extracted by using the Feldman–Cousins
(FC) frequentist approach [57]. The implementation of the FC method in ROOSTATS [58] is
used to compute the interval. All the nuisance parameters (including #b) are profiled in order
to take into account the corresponding uncertainties (statistical and systematic). If the condition
R  1 is imposed, we obtain R > 0.955 at the 95% CL. Figure 7 summarizes the expected limit
bands for 68% CL, 95% CL, and 99.7% CL, obtained from the FC method. The expected limit
bands are determined from the distribution of the profile likelihood obtained from simulated
pseudo-experiments. The upper and lower acceptance regions constructed in this procedure
are used to determine the endpoints on the allowed interval for R. In the pseudo-experiments
the expected signal and background yields are varied using Poisson probability distributions
for the statistical uncertainties and Gaussian distributions for the systematic uncertainties. By
constraining |Vtb|  1, a similar procedure is used to obtain |Vtb| > 0.975 at the 95% CL.

6.4 Indirect measurement of the top-quark total decay width

The result obtained for R can be combined with a measurement of the single-top-quark pro-
duction cross section in the t-channel to yield an indirect determination of the top-quark total
width Gt. Assuming that Âq B(t ! Wq) = 1, then R = B(t ! Wb) and

Gt =
st-ch.

B(t ! Wb)
· G(t ! Wb)

stheor.
t-ch.

, (7)

where st-ch. (stheor.
t-ch. ) is the measured (theoretical) t-channel single-top-quark cross section and

G(t ! Wb) is the top-quark partial decay width to Wb. If we assume a top-quark mass

 most precise measurement to date
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tion.

If the three-generation CKM matrix is assumed to be unitary, then R = |Vtb|2 [4]. By perform-
ing the fit in terms of |Vtb|, a value of |Vtb| = 1.007 ± 0.016 (stat.+syst.) is measured. Upper
and lower endpoints of the 95% CL interval for R are extracted by using the Feldman–Cousins
(FC) frequentist approach [57]. The implementation of the FC method in ROOSTATS [58] is
used to compute the interval. All the nuisance parameters (including #b) are profiled in order
to take into account the corresponding uncertainties (statistical and systematic). If the condition
R  1 is imposed, we obtain R > 0.955 at the 95% CL. Figure 7 summarizes the expected limit
bands for 68% CL, 95% CL, and 99.7% CL, obtained from the FC method. The expected limit
bands are determined from the distribution of the profile likelihood obtained from simulated
pseudo-experiments. The upper and lower acceptance regions constructed in this procedure
are used to determine the endpoints on the allowed interval for R. In the pseudo-experiments
the expected signal and background yields are varied using Poisson probability distributions
for the statistical uncertainties and Gaussian distributions for the systematic uncertainties. By
constraining |Vtb|  1, a similar procedure is used to obtain |Vtb| > 0.975 at the 95% CL.

6.4 Indirect measurement of the top-quark total decay width

The result obtained for R can be combined with a measurement of the single-top-quark pro-
duction cross section in the t-channel to yield an indirect determination of the top-quark total
width Gt. Assuming that Âq B(t ! Wq) = 1, then R = B(t ! Wb) and

Gt =
st-ch.

B(t ! Wb)
· G(t ! Wb)

stheor.
t-ch.

, (7)

where st-ch. (stheor.
t-ch. ) is the measured (theoretical) t-channel single-top-quark cross section and

G(t ! Wb) is the top-quark partial decay width to Wb. If we assume a top-quark mass
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Table 4: Summary of the systematic uncertainties affecting the measurement of R. The values
of the uncertainties are relative to the value of R obtained from the fit.

Source Uncertainty (%)
Experimental uncertainties:
#b 2.4
#q 0.4
ftt 0.1
DY 0.2
misidentified lepton 0.1
JER 0.5
JES 0.5
unclustered Emiss

T 0.5
integrated luminosity 0.2
pileup 0.5
simulation statistics 0.5
fcorrect 0.5
model calibration 0.2
selection efficiency 0.1
Theoretical uncertainties:
top-quark mass 0.9
top-quark pT 0.5
ME-PS 0.5
µR/µF 0.5
signal generator 0.5
underlying event 0.1
colour reconnection 0.1
hadronisation 0.5
PDF 0.1
t ! Wq flavour 0.4
|Vtd|/|Vts| <0.01
relative single-top-quark fraction (tW) 0.1
VV (theoretical cross section) 0.1
extra sources of heavy flavour 0.4
Total systematic 3.2

of 172.5 GeV, then the theoretical partial width of the top quark decaying to Wb is G(t !
Wb) = 1.329 GeV [3]. A fit to the b-tagged jet multiplicity distribution in the data is per-
formed, leaving Gt as a free parameter. In the likelihood function we use the theoretical pre-
diction for the t-channel cross section at

p
s = 7 TeV from Ref. [59] and the corresponding

CMS measurement from Ref. [25]. The uncertainties in the predicted and measured cross sec-
tions are taken into account as extra nuisance parameters in the fit. The uncertainty in the
theoretical cross section is parameterised by convolving a Gaussian function for the PDF uncer-
tainty with a uniform prior describing the factorisation and renormalisation scale uncertainties.
Some uncertainties in the experimental cross section measurement such as those from JES and
JER, b-tagging efficiency, µR/µF scales, and ME-PS threshold for tt production are fully corre-
lated with the ones assigned to the measurement of R. All others are summed in quadrature
and assumed to be uncorrelated. After performing the maximum-likelihood fit, we measure
Gt = 1.36 ± 0.02 (stat)+0.14

�0.11 (syst) GeV, in good agreement with the theoretical expectation [3].
The dominant uncertainty comes from the measurement of the t-channel cross section, as sum-
marized in Table 5.
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