Lecture 3

Classification of CP-violating effects

CPV in decay:

$$\begin{vmatrix} \overline{A}_{f} / A_{f} \end{vmatrix} \neq 1 \qquad A_{CP, f^{\pm}} \equiv \frac{\Gamma(P^{-} \to f^{-}) - \Gamma(P^{+} \to f^{+})}{\Gamma(P^{-} \to f^{-}) + \Gamma(P^{+} \to f^{+})} = \frac{\left| \overline{A}_{f^{-}} / A_{f^{+}} \right|^{2} - 1}{\left| \overline{A}_{f^{-}} / A_{f^{+}} \right|^{2} + 1}$$

CPV in mixing:
$$A_{SL}(t) \equiv \frac{d\Gamma/dt \left(\overline{P}_{phys}^{0} \rightarrow l^{+}X\right) - d\Gamma/dt \left(P_{phys}^{0} \rightarrow l^{-}X\right)}{d\Gamma/dt \left(\overline{P}_{phys}^{0} \rightarrow l^{+}X\right) + d\Gamma/dt \left(P_{phys}^{0} \rightarrow l^{-}X\right)} = \frac{1 - |q/p|^{4}}{1 + |q/p|^{4}}$$

CPV in the interference decay-mixing:

q

 $\Im m(\lambda_f) \neq 0$ For example: decays to CP eigenstates f_{CP} $\lambda_f \equiv \frac{q}{p} \frac{\overline{A_f}}{A_f}$ $A_{f_{CP}}(t) = \frac{d\Gamma/dt \left(\overline{P}_{phys}^{0} \to f_{CP}\right) - d\Gamma/dt \left(P_{phys}^{0} \to f_{CP}\right)}{d\Gamma/dt \left(\overline{P}_{phys}^{0} \to f_{CP}\right) + d\Gamma/dt \left(P_{phys}^{0} \to f_{CP}\right)}$

Observables: "direct" CP asymmetry - 1

Time-integrated "direct" CP asymmetry requires two amplitudes and $\delta \neq 0$:

Observables: "direct" CP asymmetry - 2

Time-integrated "direct" CP asymmetry ("CP violation in decay"):

$$A_{CP} \equiv \frac{\Gamma(i \to f) - \Gamma(\bar{i} \to \bar{f})}{\Gamma(i \to f) + \Gamma(\bar{i} \to \bar{f})} = \frac{2|A_1||A_2|\sin\delta\sin\phi}{|A_1|^2 + |A_2|^2 + 2|A_1||A_2|\cos\delta\cos\phi}$$

- the only possibile CPV effect for *charged* mesons decays !

- requires at least two amplitudes and $\delta{\neq}0$

Time evolution of neutral B mesons - 3

Interference between mixing and decay to a CP eigenstate f_{CP} $\Rightarrow \Gamma(B^0_{phys}(t) \rightarrow f_{CP}) \neq \Gamma(\overline{B}^0_{phys}(t) \rightarrow f_{CP})$

Flavor-tagged time-dependent decay rates are different! they are governed by the "CP parameter":

Time-dependent CP asymmetry - 2

Decay distributions $f_+(f)$ when tag = $B^0(\overline{B^0})$, pair-produced at Y(4S)

$$f_{CP,\pm}(\Delta t) = \frac{\Gamma}{4} e^{-\Gamma \Delta t} [1 \pm S_{f_{CP}} \sin \Delta m_d \Delta t \mp C_{f_{CP}} \cos \Delta m_d \Delta t]$$

Asymmetry

$$A_{f_{CP}}(\Delta t) = C_{f_{CP}} \cos(\Delta m_d \Delta t) - S_{f_{CP}} \sin(\Delta m_d \Delta t)$$

CP parameter

$$\lambda_{f_{CP}} = \eta_{f_{CP}} \frac{q}{p} \cdot \frac{\overline{A}_{\overline{f_{CP}}}}{A_{f_{CP}}}$$

$$\begin{split} C_{f_{CP}} &= \frac{1 - |\lambda_{f_{CP}}|^2}{1 + |\lambda_{f_{CP}}|^2} \\ S_{f_{CP}} &= \frac{-2 \ln \lambda_{f_{CP}}}{1 + |\lambda_{f_{CP}}|^2} \end{split}$$

For single decay amplitude = 0

$$=-\mathbf{Im}\lambda_{f_{CF}}$$

CPV in the B sector: CKM angles

 $V_{td} = |V_{td}|e^{-i\phi_1} (B^0 - \overline{B}^0 \text{ mixing})$

$$V_{td} = \left| V_{td} \right| e^{-i\beta}$$

- Mixing-assisted CPV
 - Observation in $B^0 \rightarrow J/\psi K^0$ BaBar & Belle (2001)
- CPV in B^0 - \overline{B}^0 mixing itself
 - Not seen yet

$$V_{ub} = |V_{ub}|e^{-i\phi_3}$$
 ($b \to u$ decays) $V_{ub} = |V_{ub}|e^{-i\gamma}$

- Direct CPV (Interference with other diagrams)
 - Evidence in $B^0 \rightarrow \pi^+\pi^-$ Belle (2003), not seen by BaBar
 - Evidence in $B^0 \rightarrow K^+ \pi^-$ BaBar & Belle (2004)

Both V_{td} and V_{ub} are involved

- Mixing-assisted CPV for final states containing V_{ub}
 - Evidence in $B^0 \rightarrow \pi^+\pi^-$ Belle (2003), not seen by BaBar

Experimental facilities

Past:DORIS, CESR, LEPPresent:Tevatron, KEK-B, PEP-IIFuture:LHC, Super B-Factory

Time-Dependent Mixing Measurement

B-flavor tagging efficiency and Δt resolution function are obtained from data (measurement of mixing, with exclusively reconstructed self-tagging flavor states)

Time-Dependent CP Asymmetry Measurement

B-flavor tagging efficiency and Δt resolution function are obtained from data (measurement of mixing, with exclusively reconstructed self-tagging flavor states)

KEKB asymmetric e⁺e⁻ collider

KEKB asymmetric e⁺e⁻ collider

Belle Detector

PID System at Belle

Aerogel Cherenkov Counters

Electromagnetic Calorimeter at Belle

CsI(Tl) crystals for Belle

 $\begin{array}{l} Light \ output-5000 \ ph.el./MeV \\ Electronics \ noise \ \sigma{\sim}200 \ KeV \end{array} \end{array}$

- SVT: vertexing and tracking: crucial for Δt and low p_T tracks
- DCH: main tracking device, also dE/dx for particle ID
- DIRC: K- π separation > 3.4 σ for P < 3.5GeV/c
- EMC: very good energy resolution; electron ID, π^0 and γ reco.
- IFR: Muon and neutral hadrons (K⁰_L) ID

BaBar: the Silicon Vertex Tracker

double-sided Si microstrip detectors 5 layers: 340 wafers, 150000

readout channels

 $20^{\circ} < \theta < 150^{\circ}$

 $\sigma_{\text{point}} \approx 10\text{-}15\,\mu\text{m} \text{ for the inner} \\ \text{layers}$

Δt from (Δz)_{LAB}

- $\Delta z = z_{cp} z_{tag}$
 - $\Delta t \simeq \Delta z / (\gamma \beta c)$
- Interaction Point $\gg \Delta z$
- B flight-length in x-y: only $\sim 30\mu$
- C conservation in $\Upsilon(4S) \rightarrow B\overline{B}$ $\psi(t) = |B_1^0 > |\overline{B}_2^0 > -|B_1^0 > |B_2^0 >$ (one is B^0 and other is \overline{B}^0 at any time)

The other *B* provides time reference and flavor tagging at $\Delta t = 0$

Parameters	BaBar	Belle
e^+e^- energy	3.1 × 9 GeV	3.5×8.5GeV
γβ	0.56	0.425
Interaction point $(h \times v \times l)$	$120\mu\text{m} \times 5\mu\text{m} \times 8.5\text{mm}$	$80\mu\mathrm{m} \times 2\mu\mathrm{m} \times 3.4\mathrm{mm}$
Typical Δz	260µm	200µ m
σ_z (CP-side)	$50 \mu m$	75µm
σ_z (tag-side)	$100 \sim 150 \mu{ m m}$	$140\mu\mathrm{m}$

Particle identification: the DIRC

K identification performance

Charged K identified by

DIRC: Cerenkov angle DCH: dE/dx (p < 0.7 GeV/c)

Efficiency and purity measured on control samples (soft pion tag) $D^{*+} \rightarrow D^0\pi^+, \quad D^0 \rightarrow K^-\pi^+$

> 3.4 σ π /K separation up to \approx 3.5 GeV/c

CP Analysis: Time Distribution

same mistag probability ω and time-resolution function $R(\Delta t)$

Flavor tagging – dilution factor

Classify the events into six classes and measure D = (1-2w) for each. (*w* : wrong tag prob.)

Reconstruction of B mesons

$B^0 \rightarrow J/\psi K^0$: combined result

 $sin2\phi_1 = 0.642 \pm 0.031$ (stat) ± 0.017 (syst) $\mathcal{A} = 0.018 \pm 0.021$ (stat) ± 0.014 (syst)

2006: BaBar + Belle

sin2\oplus_1 history (**1998-2005**)

Unitary triangle from CPV angles

UT from CP-conserving quantities

Summary

- Large CP violations seen in B decays
- Excellent agreement with KM ansatz
 - $sin2\phi_1 \rightarrow a$ new "gold standard" for New Physics searches
- Room for New Physics is pretty small
 - either the NP mass scale is very high
 - or NP is somehow hidden from the flavor sector
- But the strength of CP violation in SM is not sufficient to explain Baryon Asymmetry in the Universe
- NP searches with B's have another orderof-magnitude of reach (at least).
 - A phased approach to Super-KEKB/Belle seems likely
 - An announcement from the KEK DG Suzuki soon?!

What's next?

Tevatron Performance Many improvements over last year More pbars, more reliable Monthly int. lum. increased 25 → 45 pb⁻¹ Peak lum. increased 180 10³⁰ → 286 10³⁰ cm⁻² s⁻¹ Expect ~6-7 fb⁻¹ by Oct. '09

Tevatron Detectors

DZero Run II upgrades 2T solenoid inner tracking Preshower extended µ coverage and shielding Trigger, DAQ

CDF Run II upgrades Inner tracking Forward calorimeter

extended µ coverage Trigger, DAQ

recorded 3 fb⁻¹ data taking efficiency ~ 85%

LHCb detector

Flavor Physics at LHCb

- At LHCb huge xsection (.5 mb), long decay length (1 cm)
- 7but high backgrounds, high performance trigger fundamental.
- Systematics will be more important than statistics, at the startup at least.
- 7 Rich program possible, even at modest luminosities

A few examples.....

Very Rare B Decays: $B_s \rightarrow \mu^+ \mu^-$

- Very rare loop decay, sensitive to New Physics:
 - BR ~3.5x10⁻⁹ in SM, can be strongly enhanced in SUSY
 - Current 90% CL limit from
 - CDF+D0 with 1 fb-1 is
 - ~20 times SM
- Main issue is background rejection
 - With limited MC statistics, indication that main background is $b \rightarrow \mu$, $b \rightarrow \mu$

0.5 $fb^{-1} \Rightarrow$ exclude BR values down to SM

10 fb⁻¹ \Rightarrow >5 σ observation of SM signal

e+e- colliders

M.Biagini EPS 07

Super B factory at KEK

The beam pipes and all vacuum components will be re higher-current-proof design. will reach 8×10^{35} cm⁻²s⁻¹.