新学術領域「新ハドロン」

多彩なフレーバーで探る新しいハドロン存在形態の包括的研究 第一回評価委員会@名古屋大学,8月4日(木)

Composite and elementary natures of hadrons ~分子共鳴とクォーク核の状態混合~

奈良女子大学 永廣 秀子

共同研究者: 名和 (RCNP), 尾崎 (東大) 慈道 (YITP), 保坂 (RCNP)

H. Nagahiro et al., Phys. Rev. D83,111504(R) (2011)

本研究の目的

Exotic hadrons : <u>not</u> simple $q\bar{q}$ (or qqq) state

> σ , $f_0(980)$, $a_0(980)$, ..., $a_1(1260)$, $K_1(1270)$, ..., N*(1535), $\Lambda(1405)$, ... etc...

→ multi-quark system, ハドロン分子共鳴状態, ...

 $a_1(1260) \rightarrow \pi\gamma$ decay as $\pi\rho$ composite H. N., L. Roca, A. Hosaka and E. Oset, PRD79(09)014015. $a_1^+ \rightarrow \pi^+ \gamma \dots \Gamma_{\pi\gamma} \sim 130 \text{ keV}$ [実験値: 640 ± 246 keV] $b_1^+ \rightarrow \pi^+ \gamma \dots \Gamma_{\pi\gamma} \sim 210 \text{ keV} [$ " : 230 + 60 keV] $|a_1\rangle = C_1 |C_{\pi}\rangle + C_2 |a_1\rangle + \dots$ hadronic composite physical hadron qq^{bar}-core a₁に限らず全てのハドロン共鳴は、 ✓ どのように混ざるか 多かれ少なかれ、複数の要素の混合状態 ✓ どの程度混ざっているか

@ hadron 2011, Künstlerhaus, München, 17 June 2011 Hideko NAGAHIRO

 a_1

$a_1(1260)$ axial vector meson \cdots a good example

$$a_1(1260)$$
 $I^G(J^{PC}) = 1^{-}(1^{++})$ [Particle Data Group, JPG **37**, 075021 (2010)]

 $\frac{VALUE (MeV)}{1230 \pm 40 \text{ OUR ESTIMATE}} \xrightarrow{EVTS} WIDTH \xrightarrow{VALUE (MeV)} \xrightarrow{EVTS} 250 \text{ to } 600 \text{ OUR ESTIMATE}$

as an elementary field (or $q\bar{q}$) : candidate for chiral partner of ρ

[*qq*-NJL] M.Wakamatsu *et al.*, ZPA311(88)173, A.Hosaka, PLB244(90)363-367, ... [Lattice QCD] M. Wingate *et al.*, PRL74(95)4596, ...

[Hidden local sym.] Bando-Kugo-Yamawaki; PR164(88)217; Harada-Yamawaki, PR381(03)1, Kaiser-Meissner, NPA519(90)671, ...

[Holographic QCD] T. Sakai, S. Sugimoto, PTP113 (05) 843; *ibid*.114(05)1083, ...

as a dynamically generated resonance [as $\pi\rho$ composite particle]

[coupled-channel BS] Lutz-Kolomeitsev, NPA730(04)392, ... [Chiral Unitary model] Roca-Oset-Singh, PRD72(05)014002, ...

applications

[τ-decay spectrum] M. Wagner and S. Leupold, PRD78(08)053001, ... [radiative decay width] H.N, L. Roca, A. Hosaka, E. Oset, PRD79(09)014015, ...

A good model for a_1 , π and ρ mesons

A good model for **composite** a_1 and **elementary** a_1

[hQCD is constructed in the large Nc limit]

Dynamically generated resonances : composite a_1 meson

<u>πρ-composite *E*</u>*LTOa*₁ meson : chiral unitary model</u>

L.Roca, E.Oset and J.Singh, PRD72(05)014002

 $\rightarrow a_1$ pole as mainly $\pi \rho$ composite at 1011-84*i* MeV

πρ → πρ 散乱振幅 : coupled-channel 計算

regularization constant

 $a(\mu) = -1.85 \ (\mu = 900 \text{MeV}) \ [\text{Roca et al.}] \rightarrow a(\mu) = -0.2 \ (\text{natural})$ to avoid the double counting.

[T. Hyodo, D.Jido, A.Hosaka, PRC78(08)025203]

[Roca05]

Formalism : elementary a_1 field through additional interaction

mixed states of $\pi \rho$ composite a_1 and elementary a_1 mesons

Numerical result 1 : pole-flow of T-matrix

Alternative expression for the *full* $\pi\rho$ scattering amplitude T

$$T = \frac{v_{WT} + v_{a_1}}{1 - (v_{WT} + v_{a_1})G} = (g_R, g) \left\{ \begin{pmatrix} s - s_p \\ s - m_{al}^2 \end{pmatrix} - \begin{pmatrix} g_R Gg \\ g Gg_R \ g Gg \end{pmatrix} \right\}^{-1} \begin{pmatrix} g_R \\ g \end{pmatrix}$$
$$= (\nearrow, \nearrow) \left\{ \begin{pmatrix} 70000 \\ \hline \end{pmatrix} \right\}^{-1} - \begin{pmatrix} \bigcirc \\ \hline \\ \hline \end{pmatrix} \end{pmatrix}^{-1} - \begin{pmatrix} \bigcirc \\ \hline \\ \hline \\ \hline \end{pmatrix} \right\}^{-1} \begin{pmatrix} \checkmark \\ \hline \\ \hline \\ \hline \end{pmatrix} \right\}^{-1} \begin{pmatrix} \checkmark \\ \hline \\ \hline \\ \hline \end{pmatrix}$$

<u> $\pi\rho$ -composite a_1 pole</u>

$$T_{WT} = \frac{v_{WT}}{1 - v_{WT}G}$$

$$(s)$$

13

Alternative expression for the *full* $\pi\rho$ scattering amplitude T

$$T = \frac{v_{WT} + v_{a_1}}{1 - (v_{WT} + v_{a_1})G} = (g_R, g) \left\{ \begin{pmatrix} s - s_p \\ s - m_{a_1}^2 \end{pmatrix} - \begin{pmatrix} g_R Gg \\ g Gg_R \ g Gg \end{pmatrix} \right\}^{-1} \begin{pmatrix} g_R \\ g \end{pmatrix}$$
$$= (\mathbf{a}, \mathbf{a}) \left\{ \begin{pmatrix} \mathbf{a} & \mathbf{a} \\ \mathbf{a} & \mathbf{a} \end{pmatrix} - \mathbf{a} & \mathbf{a} \end{pmatrix} \left\{ \begin{pmatrix} \mathbf{a} & \mathbf{a} \\ \mathbf{a} & \mathbf{a} \end{pmatrix} \right\}^{-1} - \begin{pmatrix} \mathbf{a} & \mathbf{a} \\ \mathbf{a} & \mathbf{a} \end{pmatrix} \right\}^{-1} \begin{pmatrix} \mathbf{a} & \mathbf{a} \\ \mathbf{a} & \mathbf{a} \end{pmatrix} \right\}^{-1} \begin{pmatrix} \mathbf{a} & \mathbf{a} \\ \mathbf{a} & \mathbf{a} \end{pmatrix}$$

In this form, we can analyze the mixing nature of the physical a_1 in terms of the **original two bases**: $mathaccolor mathactic a_1$ and $mathaccolor mathactic a_1$ elementary a_1

$$= D^{11} D^{21} D^{12} D^{22}$$

full propagator D の性質

✓ それぞれの propagator は T_{full} と同じ所に poleを持つ。 ✓ その residues z_a^{ii} は、mixing rate の意味を持つ。

 $z_a^{11} = |\langle 1|a\rangle|^2 = |\langle \bullet |\text{pole-a}\rangle|^2$

→ pole-a に, composite a₁を見いだす確率

In this form, we can analyze the mixing nature of the physical a_1 in terms of the **original two bases**: mm and mmcomposite a_1 elementary a_1

$$D^{11} = \frac{z_a^{11}}{s - M_a^2} + \frac{z_b^{11}}{s - M_b^2} + \text{regular term}$$

Residues : probabilities of finding two a_1 's in pole-a and -b

Last question : large N_C limit vs. nature of poles

Conclusions

- » We analyzed the nature of the hadronic resonance by residues
- » $a_1(1260)$ meson : $\pi \rho$ 分子共鳴 + elementary a_1
 - > bare $a_1 \dots$ doesn't have molecule nature \leftarrow > $\pi \rho$ molecule \dots "natural" regularization \leftarrow Important to avoid the double-counting
 - \checkmark the pole expected to be observed is *pole-a*: having finite \bigcirc comp.
 - ✓ Non-trivial N_C dependence pole-nature \leftarrow ? → large N_C limit

<u>Future works</u>

phenomenological interests

» τ -decay spectrum with our model parameter

» radiative decay width, etc...

to see how the nature of poles affects *observables*

theoretical interests

» application to other systems, σ , N^{*}(1535), etc...