Measuring Higgs coupling to charm quark

WRU Symposium "Interplay between LHC and Flavor Physics" Nagoya University March 15, 2016

Kohsaku Tobioka Tel Aviv Univ., Weizmann Institute, KEK

with Gilad Perez, Yotam Soreq, Emmanuel Stamou arXiv: 1503.00290 and 1505.06689

Spin, Charge Mass Coupling

Higgs in Standard Model

Neutral Scalar: Higgs?

Higgs in Standard Model

Higgs in Standard Model

Higgs Couplings at Run I

SM expects next strongest coupling is charm Yukawa

I. Inclusive $h \rightarrow cc$

2. Exclusive $h \rightarrow J/\psi + \gamma$

Inclusive $h \rightarrow cc$

recasting $h \rightarrow bb$ analysis

b-tagging to study $H \rightarrow bb$

b-jet is distinguished from other jets Secondary Vertex: B-meson is long-lived ~440µm/c fly in the detector

main *issue*: Mistag

D-meson, also long-lived ~120-310µm/c

> c-jet 4-40%, light jet: O(0.1-1)%

Vh (Associate) production

ATLAS [arXiv:1409.6212] CMS [arXiv:1310.3687]

What if $H \rightarrow cc$ is enhanced?

Large $\epsilon_{c/b}$, more sensitive to μ_c but only constrain a combination (degeneracy) \rightarrow Need very different working points $\epsilon_{c/b}$

Collect info from ATLAS, use S/B>2.5%

ATLAS [arXiv:1409.6212]

Collect info from ATLAS, use S/B>2.5%

Collect info from CMS, use S/B>2.5%

CMS [arXiv:1310.3687] Phys.Rev. D89 (2014) 012003

Please provide table or keep good resolution...

Collect info from CMS, use S/B>2.5%

^{0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95} BDT output

Collect info from CMS, use S/B>2.5%

 $\mu_b + (0.05 \ \epsilon_{c/b})\mu_c$ ATLAS&CMS have different working points

	1st Tag	2nd Tag	$\epsilon_{c/b}$
(a)ATLAS	Med	Med	8.2×10^{-2}
(b)ATLAS	Tight	Tight	5.9×10^{-3}
(c)CMS	Med1	Med1	0.18
(d)CMS	Med2	Loose	0.19
(e)CMS	Med1	Loose	0.23
(f)CMS	Med3	Loose	0.16

$$L(\mu) = \prod_{i} P_{poiss}(k_i, N_{SM,i}^{BG} + \mu N_{SM,i}^{signal}).$$

 $\mu_b + (0.05 \epsilon_{c/b})\mu_c$ ATLAS&CMS have different working points

	1st Tag	2nd Tag	$\epsilon_{c/b}$
(a)ATLAS	Med	Med	8.2×10^{-2}
(b)ATLAS	Tight	Tight	5.9×10^{-3}
(c)CMS	Med1	Med1	0.18
(d)CMS	Med2	Loose	0.19
(e)CMS	Med1	Loose	0.23
(f)CMS	Med3	Loose	0.16

$$L(\mu) = \prod_{i} P_{poiss}(k_i, N_{SM,i}^{BG} + \mu N_{SM,i}^{signal}).$$

$\mu_b + (0.05 \epsilon_{c/b})\mu_c$ ATLAS&CMS have different working points

$L(\mu) = \prod$	$P_{poiss}(k_i, N_{i})$	$BG_{SM,i} + \mu N_{SM,i}^{signal}$).
-i		

	1st Tag	2nd Tag	$\epsilon_{c/b}$
(a)ATLAS	Med	Med	8.2×10^{-2}
(b)ATLAS	Tight	Tight	5.9×10^{-3}
(c)CMS	Med1	Med1	0.18
(d)CMS	Med2	Loose	0.19
(e)CMS	Med1	Loose	0.23
(f)CMS	Med3	Loose	0.16

 $\mu_b + (0.05 \epsilon_{c/b})\mu_c$ ATLAS&CMS have different working points

	1st Tag	2nd Tag	$\epsilon_{c/b}$
(a)ATLAS	Med	Med	8.2×10^{-2}
(b)ATLAS	Tight	Tight	5.9×10^{-3}
(c)CMS	Med1	Med1	0.18
(d)CMS	Med2	Loose	0.19
(e)CMS	Med1	Loose	0.23
(f)CMS	Med3	Loose	0.16

 $L(\mu) = \prod_{i} P_{poiss}(k_i, N_{SM,i}^{BG} + \mu N_{SM,i}^{signal}).$

 $\mu_b + (0.05 \epsilon_{c/b})\mu_c$ ATLAS&CMS have different working points

	1st Tag	2nd Tag	$\epsilon_{c/b}$
(a)ATLAS	Med	Med	8.2×10^{-2}
(b)ATLAS	Tight	Tight	5.9×10^{-3}
(c)CMS	Med1	Med1	0.18
(d)CMS	Med2	Loose	0.19
(e)CMS	Med1	Loose	0.23
(f)CMS	Med3	Loose	0.16

$$L(\mu) = \prod_{i} P_{poiss}(k_i, N_{SM,i}^{BG} + \mu N_{SM,i}^{signal}).$$

 $\mu_b + (0.05 \epsilon_{c/b})\mu_c$ ATLAS&CMS have different working points

New Production by large Yukawa

Decay Br(H \rightarrow cc)=100%, still μ_c =34

At large coupling $\kappa_c = y_c / y_c^{SM} \sim 100$ switch on new production

Related work [Brivio, Goertz, Isidori ('15)]

17

First Bound on Coupling

 $y_t \neq y_c$ Exclude Higgs-quark coupling universality

2. New Technology: Charm tagging

$$\begin{array}{cccc} \epsilon_b & \epsilon_c & \epsilon_{\text{light}} \\ \text{Med: } 70, \ 20, \ 1.25 \quad (\%) \\ & \downarrow & \downarrow & \downarrow \\ \text{C-tag: } 13, \ 19, \ 0.5 \end{array}$$

Scharm study[arXiv:1501.01325]

More data and charm-tagging to disentangle μ_c

More data and charm-tagging to disentangle μ_c

68%CL

$$\Delta \mu_c = 15 \quad (2x300 \text{ fb}^{-1}) \\ = 5.6 \quad (2x3000 \text{ fb}^{-1})$$

More data and charm-tagging to disentangle μ_c

68%CL

More data and charm-tagging to disentangle μ_c

68%CL

More data and charm-tagging to disentangle μ_c

Exclusive $h \rightarrow J/\psi + \gamma$

Exclusive $J/\psi + \gamma$ channel

 $\Gamma(H \to J/\psi + \gamma) = |(11.9 \pm 0.2) - (1.04 \pm 0.14)\kappa_c|^2 \times 10^{-10} \text{ GeV}_{c}|^2$

Exclusive J/ ψ + γ channel

3.Combine with $h \rightarrow 4l \text{ or } \gamma \gamma$

cancel total width and cross section dependence

 $\frac{\sigma(pp \to h) \times \mathrm{BR}_{h \to J/\psi\gamma}}{\sigma(pp \to h) \times \mathrm{BR}_{h \to ZZ^* \to 4\ell}} = \frac{\Gamma_{h \to J/\psi\gamma}}{\Gamma_{h \to ZZ^* \to 4\ell}} = 2.79 \frac{(\kappa_{\gamma} - 0.087\kappa_c)^2}{\kappa_V^2} \times 10^{-2} < 9.3$

$$-210\kappa_V + 11\kappa_\gamma < \kappa_c < 210\kappa_V + 11\kappa_\gamma$$

Calculation updated+ $h \rightarrow \gamma \gamma$

[<u>arXiv: 1505.03870]</u> Koenig, Neubert

$$\kappa_c \lesssim 430$$

due to smaller κ_c coefficient

$J/\psi + \gamma$ Channel at Future LHC

Summary

Summary

Summary

Thank you