The 3rd KMI International Symposium 2017/Jan/5-7

GRAINE project: Cosmic Gamma-ray Observation by Balloon-Borne Telescope with Nuclear Emulsion

GRAINE = Gamma-Ray Astro-Imager with Nuclear Emulsion

Shigeki Aoki (Kobe University) for GRAINE collaboration Kobe University, Nagoya University, ISAS/JAXA, Aichi University of Education, Okayama University of Science

photo: GRAINE 2015 2015/May/12 Alice Springs, Austraria ©JAXA

© http://astronomy.nmsu.edu/tharriso/ast536/ast536lecture3.html

© http://astronomy.nmsu.edu/tharriso/ast536/ast536lecture3.html

Fermi's Five-year View of the Gamma-ray Sky (E > 1GeV)

Image credit: NASA/DOE/Fermi LAT Collaboration

>3000 sources (3FGL)

Fermi's Five-year View of the Gamma-ray Sky (E > 1GeV)

Image credit: NASA/DOE/Fermi LAT Collaboration

>3000 sources (3FGL)

Nuclear emulsion

Gamma-ray

Microscopic view 1<u>0micron</u>

Powerful tracking device >High spatial resolution : ~1micron >Small radiation length : 0.002Xo

e+/-

e-/

High angular resolution for gamma-ray Sensitive to gamma-ray polarization

Angular resolution

Gamma-Ray Astro-Imager with Nuclear Emulsion

GRAINE

Gamma-Ray Astro-Imager with Nuclear Emulsion

Converter Emulsion + Copper foil

Timestamper Multi-stage shifter

Calorimeter Emulsion + metal plate

Attitude monitor

Star camera

* $10m^{2*}\varepsilon_{trans}^{*}\varepsilon_{conv}^{*}\varepsilon_{det}$

	Fermi LAT	GRAINE
Angular resolution @100MeV	6.0deg (105mrad)	1.0deg (17mrad)
@1GeV	0.90deg (16mrad) ×1	/9 0.1deg (1.7mrad)
Energy range	20MeV – 300GeV	10MeV - 100GeV
Polarization sensitivity	No	Yes
Effective area @ 100MeV	0.25m ²	2.1m ² *
@ 1GeV	0.88m ²	3 2.8m ² *
Dead time	26.5 μ sec(readout time)	Dead time free

Emulsion gamma-ray Telescope

Flow of experiment

Detector preparation ← Analysis ↓ Scanning (2nd data taking) Observation(balloon flight) several days - 1 week ← Recovery of detector

2nd multi stage shifter for GRAINE2015

Aperture area: 3600cm² W66cm × D145cm × H10cm Weight : 65kg Power consumption: 17W(typ.) Aiming ~10msec for Vela obs.

emulsion film

37.75cm

25cm

1st multi stage shifter for GRAINE2011 Aperture area : 125cm² Time resolution : 0.15s

Co-developed with Mitaka Kohki.Co.,Ltd

6

0

GRAINE roadmap (R&D has started in 2004)

Prototype Phase

2011(done), TARF, JAXA Scientific Ballooning 125cm² aperture area, 4.3hours (1.6hours@34.7km) flight

- Working test for each element
- Connection test between elements
- Measurement of atmospheric gamma-rays

Demonstration Phase

2015(analyzing), Alice Springs, JAXA International Scientific Ballooning 3850cm² aperture area, 14h22min (11h32min@36.0-37.4km) flight

Overall test by detecting known gamma-ray source (Vela pulser)

Working Phase

2018(planning)

2 to 10m² aperture area, ~36 hours flight duration

- Starting scientific observation

GRAINE 2011

First balloon-borne emulsion γ -ray telescope experiment

ືອp 43

42.6

42.4

TARF

JAXA scientific ballooning Taiki Aerospace Research Field (Hokkaido, Japan)

42.2 June 8th, 2011 4.3 hour flight duration 42 (1.6 hours @34.7km) 143 143.2143.4143.6143.8 144 144.2144.4144.6144.8 14 Longitude [deg]

> First balloon-borne experiment Feasibility test

GRAINE 2011 Flight data analysis

GRAINE roadmap (R&D has started in 2004)

Prototype Phase

2011(done), TARF, JAXA Scientific Ballooning 125cm² aperture area, 4.3hours (1.6hours@34.7km) flight

- Working test for each element
- Connection test between elements
- Measurement of atmospheric gamma-rays

Demonstration Phase

2015(analyzing), Alice Springs, JAXA International Scientific Ballooning 3850cm² aperture area, 14h22min (11h32min@36.0-37.4km) flight – Overall test by detecting known gamma-ray source (Vela pulser)

Working Phase

2018(planning)

2 to 10m² aperture area, ~36 hours flight duration

- Starting scientific observation

3780cm² aperture (x30)

Image©JAXA

 \sim millisecond timing resolution (1/10)

放球地点 日時:5月12日午前6時03分JST 場所:アリススプリングス気球放球基地 着地地点 日時:5月12日午後8時25分JST 場所: クイーンズランド州ロングリーチの 北方約130km地点

翻時間

形前度 Flight duration: 14hour22min (11hour32min(x7) @36.0-37.4km) almost covered Vela w/in 45deg zenith image©JAXA

Launched, 6:33 12th May 2015 Design, various improvements & preparations Establishment of a scheme & flow of the experiment in Australia Demonstration of overall performance

S. Takahashi et al., PTEP 073F01 (2016); K. Ozaki et al., JINST 10 P12018 (2015)

IV. Flight Data Analysis -Detector Performance Check-■ γ-ray Imaging Test Using Launching Plate ■ Observation of Cosmic-ray East-West Effect

Measurement of BG Flux at 36-37km

V. Summary & Prospect

Data analysis of GRAINE-2015 Balloon Experiment

- In order to demonstrate detector performance by detection of Vela pulsar
 Established or multiplication processes
- Established γ-ray event (γ-+e+e-) selection process.
 Performance-checking data is presented. (imaging test, observation of CR
- E-W effect and BG measurement)
- Next Balloon Experiment is planning.
- April 2018 in Alice Springs, Australia
- Aperture area: 0.4m² \rightarrow 2.5 m² (x6.6), Flight Duration: 14 h \rightarrow ~30 h (x2.1) Larger yield and detection of 3-5 sources

放球地点 日時:5月12日午前6時03分JST 場所:アリススプリングス気球放球基地

着地地点 日時:5月12日午後8時25分JST 場所:ウイーンズランド州ロングリーチの 北方約130km地点

飛翔時間 14時間22分

Flight duration: 14hour22min (11hour32min(x7) @36.0-37.4km) almost covered Vela w/in 45deg zenith image©JAXA

eparations f the experiment in Australia ice

Image©JAXA S. Takahashi et al., PTEP 073F01 (2016); K. Ozaki et al., JINST 10 P12018 (2015)

Time stamp to Gamma-ray event

Cosmic-ray Interaction Study

All charged par/cles are recorded in emulsion chamber with dead /me free. $O(10^5)$ events are detected, and under analysis.

Cosmic-ray Interaction Study

All charged par/cles are recorded in emulsion chamber with dead /me free. $O(10^5)$ events are detected, and under analysis.

 γ -ray imaging performance

High γ -ray imaging performance was being obtained.

by H.Kawahara

multiplicity:44

Off-source region data (atm. gamma-ray)

GRAINE roadmap (R&D has started in 2004)

Prototype Phase

2011(done), TARF, JAXA Scientific Ballooning 125cm² aperture area, 4.3hours (1.6hours@34.7km) flight

- Working test for each element
- Connection test between elements
- Measurement of atmospheric gamma-rays

Demonstration Phase

2015(analyzing), Alice Springs, JAXA International Scientific Ballooning 3850cm² aperture area, 14h22min (11h32min@36.0-37.4km) flight

Overall test by detecting known gamma-ray source (Vela pulser)

Working Phase

2018(planning) 2 to 10m² aperture area, ~36 hours flight duration

Starting scientific observation

Next generation multi-stage shifter

90cm

Co-developed with Mitaka Kohki Co., Ltd.

-Larger aperture area -Longer flight duration

95cm

with a higher timing resolution drive roller

~1m² Tension roller

Size : 137cm x 116cm x ~20cm Weight : <~90kg Electric consumption:~25W Aperture area : 8550cm² # of stages : 6 Gap between stages : ~0.5mm Total thickness of aperture area : 5mm <1µm repeatable accuracy (preliminary)

Conventional: 2.6ton/10m² New: 0.4ton/10m² (Prospects)

Oct. 2014 Started

w/ a single pressure vessel gondola (~250kg weight)

GRAINE project

backup

Flight data

2 mm x 2 mm of single film

Flight data

density ~400 tracks/mm²

$\gamma \rightarrow e^+e^-$ Selection

Detector Response

Energy Reconstruction

Time Stamp by Shifter 1st Stage

1st Stage ↓ 2nd Stage

Attitude analysis

K. Ozaki et al., Proc. of Balloon Sympo., isas12-sbs-022

Pioneering polarization observation for high energy γ-rays Approaching emission mechanism Pulsars, AGNs, Flares, GRBs

Vela pulsar, polarization sensitivity

0123456Alice Springs# of crosses of a source in a field of view of the telescopeApr. 15th, 19:39(ACST) culmination, 21.6deg zenithwith diurnal rotation (roughly corresponding to flight days)16:24-22:54 (6.5h/cross) w/in 45deg zenith, 14:58 - 24:20(9.4h/cross) w/in 60deg zenith

π^0 emission: Direct evidence of proton acceleration Galactic Latitude (deg **SNRs** 200MeV W44 10-10 E² dN/dE (erg cm⁻² s⁻¹ -8 Sys. error Best-fit broken power law ermi-LAT AGILE (19) 10-12 -decay Bremsstrahlung Bremsstrahlung with Break 10¹⁰ 1012 1011 10^{8} 10^9 Energy (eV) M. Ackermann et al., Science 339, 807 (2013) <200MeV, precise spectrum measurements with suppressed systematic errors >200MeV, investigating spatial structure

W44 detection sensitivity

2,27 0,42 /E 2Eh /araga) w/in /Edge zonith 2,10 0,40/7 Eh /araga) w/in Codae zonith

GeV γ-ray excess at galactic center region

GeV γ-ray observations at galactic center region with ~arcmin resolution

Simulation of GeV γ -ray excess at galactic center regio w/ high angular resolution

Galactic center region, detection sensitivity

Test of fundamental symmetries beyond the Planck scale

Scale of CPT violation (rotation angle of pol. vector) $d\theta \simeq \xi p^2 dt/M_{Pl}$

Constraint from GRB pol. obs. by GAP

 $|\xi| < O(10^{-15})$

K.Toma et al., PRL 109, 241104 (2012)

By polarization observation for <u>high energy γ -</u> <u>rays</u> (e.g. > 100 MeV) from <u>distant AGNs and</u> <u>GRBs</u> by emulsion γ -ray telescope, <u>much strict</u> (five order of magnitude better) <u>validation</u> of CPT symmetry can be performed.