ICPV

Yosuke Yusa Niigata University

Analysis strategy

We plan to develop CP fit tools using common control samples.

Analysis strategy

Tracking scale error should be evaluated before resolution function study.

Issues in discussion

- CP fit using GRID is possible?

According to Hayasaka-san, multi-core job on GRID is possible technically.

Need to discuss with software and computing group by showing specific example of what we want to do.

- → Advanced common CPfitter for complex fit (Dalitz, ϕ_2 , global fit for b→sqq penguin (b→ccs tree) modes)
- Flavor tagging using MDLH needs study of correlation among parameters. Neural-net based one is easy to be implement.

Items for tool development

- Control sample mode reconstruction Hadronic ($B^0 \rightarrow D^- \pi^+$, $D^{*-} \pi^+$, $D^{*-} \rho^+$, $B^+ \rightarrow \overline{D}^0 \pi^+$, $J/\psi K^+$) Semi-leptonic ($B \rightarrow D^* I \nu$)
- Scale error evaluation
 Cosmic penetrating IP (data/MC fraction)
 Hadronic MC
- Resolution function
 - Δt distribution analysis (materials to discuss model, shape study)
- (Flavor tagging)

Neurobayes

Multi-dimensional Likelihood (if Kakuno-san can help)

- CP fitter

Common fitter

Fitter with multi-core on GRID

Free analysis

Many channels are free for analysts to take, here I list some (somewhat in order of importance):

Channel	CKM angle	Motivations
$B \rightarrow \pi^+ \pi^-, \pi^+ \pi^0$	φ ₂	Inputs for the B $\rightarrow \pi\pi$ and B $\rightarrow \rho\rho$ isospin analysis. The modes with π^{0} 's in the final states are important, given that LHCb will have limited sensitivity.
$B \rightarrow \rho \rho$	φ ₂	
$B \rightarrow \rho \pi$	φ ₂	Dalitz plot analysis to extract $\boldsymbol{\varphi}_{_2}$ with no ambiguities.
$B^0 \rightarrow K_s K_s K_s$	φ ₁	Penguin dominated modes, with different levels of "tree pollution". It will be important to measure as many channels as possible to detect any pattern in a global fit.
$B^0 \rightarrow \omega K^0$	φ ₁	
$B^{0} \to \eta \; K^{0}$	ϕ_1	
$B^0 \rightarrow \rho \gamma$	-	Significant CPV would hint for New Physics.

Plus, you are welcome to propose your analysis ideas!

Mailing list: physics-tdcpv@belle2.org If interested, please contact Alessandro and Luigi