Search for Magnetic Monopoles at Belle II

Dmitrii Neverov

Nagoya University

18 October 2017

Introduction

Monopole Production Cross Section -				- Accelerator Searches			
X-SECT	MASS	CHG	ENERGY				
(cm ²)	(GeV)	<u>(g)</u>	(GeV)	BEAM	DOCUMENT ID TECN		
<2.5E-37 20	00-6000	1	13000	рр	¹ ACHARYA 17 INDU		
< 2E - 37 20	00-6000	2	13000	рр	¹ ACHARYA 17 INDU		
<4E-37 20	00-5000	3	13000	рр	ACHARYA 17 INDU		
< 1.5E - 3640	00-4000	4	13000	рр	ACHARYA 17 INDU		
<7E-36 100	00-3000	5	13000	рр	ACHARYA 17 INDU		
<pre><5E-40 20</pre>	0-2500	0.5-2.0	8000	рр	2 AAD 16AB ATLS		
< 2E - 37 10	0-3500	1	8000	рр	³ ACHARYA 16 INDU		
<2E-37 10	0-3500	2	8000	рр	³ ACHARYA 16 INDU		
< 6E - 37 50	00-3000	3	8000	рр	³ ACHARYA 16 INDU		
<7E-36 100	00-2000	4	8000	рр	³ ACHARYA 16 INDU		
< 1.6E - 38 20	00–1200	1	7000	рp	4 AAD 12cs ATLS		
<5E-38	45–102	1	206	e^+e^-	³ ABBIENDI 08 OPAL		
<0.2E-36 2	200–700	1	1960	pp	OABULENCIA 06K CNTR		
< 2.E - 36		1	300	$e^+ p$	^{7,8} AKTAS 05A INDU		
$< 0.2 \ \text{E}{-36}$		2	300	$e^+ p$	^{7,8} AKTAS 05A INDU		
< 0.09E - 36		3	300	$e^+ p$	^{7,8} AKTAS 05A INDU		
< 0.05E-36		\geq 6	300	$e^+ p$	^{7,8} AKTAS 05A INDU		
< 2.E - 36		1	300	$e^+ p$	^{7,9} aktas		
< 0.2E - 36		2	300	$e^+ p$	^{7,9} AKTAS 05A INDU		
< 0.07E - 36		3	300	e^+p	^{7,9} AKTAS 05A INDU		
< 0.06E - 36		> 6	300	e^+p	^{7,9} AKTAS 05A INDU		
< 0.6E - 36	>265	- 1	1800	$p\overline{p}$	¹⁰ KALBFLEISCH 04 INDU		
< 0.2E - 36	>355	2	1800	$p\overline{p}$	¹⁰ KALBFLEISCH 04 INDU		
< 0.07E - 36	>410	3	1800	$p\overline{p}$	¹⁰ KALBFLEISCH 04 INDU		
< 0.2E - 36	>375	6	1800	$p\overline{p}$	¹⁰ KALBFLEISCH 04 INDU		
< 0.7E - 36	>295	1	1800	$p\overline{p}$	^{11,12} KALBFLEISCH 00 INDU		
< 7.8E-36	>260	2	1800	$p\overline{p}$	^{11,12} KALBFLEISCH 00 INDU		
< 2.3E - 36	>325	3	1800	$p\overline{p}$	^{11,13} KALBFLEISCH 00 INDU		
< 0.11E - 36	>420	6	1800	pp	^{11,13} KALBFLEISCH 00 INDU		
<0.65E-33	<3.3	\geq 2	11A	¹⁹⁷ Au	¹⁴ HE 97		
<1.90E-33	<8.1	> 2	160A	²⁰⁸ Pb	¹⁴ HE 97		
<3.E-37	<45.0	1.0	88–94	e ⁺ e ⁻	PINFOLD 93 PLAS		
<3.E-37	<41.6	2.0	88–94	e^+e^-	PINFOLD 93 PLAS		
<7.E-35	<44.9	0.2-1.0	89-93	e+ e-	KINOSHITA 92 PLAS		
<2.E-34	<850	> 0.5	1800	pp	BERTANI 90 PLAS		
<1.2E-33	<800	> 1	1800	$p\overline{p}$	PRICE 90 PLAS		
<1.E-37	<29	- 1	50-61	e ⁺ e ⁻	KINOSHITA 89 PLAS		
<1.E-37	<18	2	50-61	e ⁺ e ⁻	KINOSHITA 89 PLAS		
<1.E-38	<17	<1	35	e+e-	BRAUNSCH 88B CNTR		
<8 E-37	<24	1	50-52	e+e-	KINOSHITA 88 PLAS		
<1 3F-35	< 22	2	50-52	_+	KINOSHITA 88 PLAS		
<1.5E−55	×22	2	30 32				
<9.E-37	<4	<0.15	10.6	e⊤ e¯	GENTILE 87 CLEO		
20 L 00	~000	1	1000				

- A stable particle carrying magnetic charge (dyons have both magnetic and electric charges)
- Proposed by Dirac in 1931 as a way to quantize electric charge

$$- e_0 g_0/\hbar c = n/2$$

- Minimal magnetic charge $g_D = 68.5e$
- Lower charges are not ruled out (e.g composite particles) arXiv:1707.05295
- High magnetic charge 2017
 - MoEDAL $g \ge g_D$
 - ATLAS $0.5g_D < g < 2.0g_D$
- Low magnetic charge 1987
 - TASSO *10e* < *g* < *70e*
 - CLEO 2*e* < *g* < 10*e*

18 Oct 2017

Monopole searches at Belle II; Dmtirii Neverov

Comment on charge limits

- Dirac condition on electric and magnetic charges quantization is obtained from phase properties of a wave-function describing a particle in the EM field which has a static singularity. Such a monopole would be:
 - Point-like
 - Static
- Saha argument gives same condition from quantization of angular momentum in a system of point-like electric and magnetic charges. Such a monopole would be:
 - Point-like
 - Bound to electric charge
- Therefore existence of monopoles of non-Dirac charges $g_D < 68.5e$ are possible, although discouraged
- Belle II have perfect conditions to search for such particles in phase II (Feb-Jun 2017), during which 20*fb*⁻¹ (or more) of integrated luminosity is expected.

Signal Monte-Carlo

- Currently simple MC generator of MM pairs in CMS with expected angular distribution, boosted to the lab frame
- Monopole parameters:
 - Mass m
 - Magnetic charge g
 - Electric charge q
- Ideally conventional MC generator (e.g. MadGraph), which will take care of branching ratios and will allow ISR
- MM pair differential cross-section

$$\frac{d\sigma_{M\overline{M}}}{d\Omega} = \frac{\alpha \alpha_m (\hbar c)^2 \beta^3}{4s} \left(1 + \cos^2\Theta\right)$$

Simulation_

- Transportation
 - Magnetic charge is accelerated in B field just like an electric one in E field
 - Boosted parabolas in R-z
 - Straight lines in R- φ
 - Extra curvature in R- ϕ for dyons

Simulation

- Ionization
 - Based on dE/dx for highly ionising particles (Ahlen 1980) extrapolated to lower charges
 - Bethe-Bloch but with $Ze \rightarrow g\beta$, therefore absence of $1/\beta^2$ dependence

$$-\frac{dE}{dx} = \frac{e^4}{m_u 4\pi\epsilon_0^2 m_e c^2} \frac{Z_{atom}}{A_{atom}} g^2 \left[ln \left(\frac{2m_e c^2 \beta^2 \gamma^2}{I} \right) - \frac{1}{2} + \frac{k}{2} - \frac{\delta}{2} - B_m \right]$$

- *K* is the QED correction
- δ is the density effect correction
- B_m is the Bloch correction

	0.015	1	2	3	6	9
k(g/g _D)	0.406	0.406	0.346	0.300	0.300	0.300
$B_m(g/g_D)$	0	0.248	0.672	1.022	1.685	2.085

• Has to be verified and improved, especially for the case of dyons

Single monopole hits

- Example monopoles of m=4.5, q=0, g=1,2,3,4e
- Leaves CDC, ECL, and KLM hits
- Because of $1/\beta^2$ absence in ionisation, heavy (4.5 GeV/c²) monopoles of low charge give a faint signal

Single monopole reconstruction*

- Under current algorithms reconstructed tracks look like
 - High momentum for monopoles
 - 1, 2 track segments for dyons
- ECL clusters are not assigned to those tracks

m=4.5 GeV/c ² q=0e	g=1e	g=2e	g=3e	g=4e
Tracking	0.0%	8.6%	69.4%	93%
Clustering	99.1%	99.7%	98.7%	97.7%
m=4.5 GeV/c ² q=1e	g=1e	g=2e	g=3e	g=4e
Tracking	99.9%	99.4%	97.9%	98.8%
Clustering	99.2%	99.8%	98.6%	99.8%

Beam background

• For high-mass, low-charge monopoles even phase II beam background levels are too high for track reconstruction

L1 trigger menu

- Firmware implementation is ongoing with current • reconstruction algorithms
- Some small modifications can be proposed to the • decision logic

Objects	Description
n_2dfinder_track	#2D finder tracks
n_2dfitter_track	#2D fitter tracks
n_3dfitter_track	#3D fitter tracks
n_NN_track	#Neural Network (NN) tracks
n_2dmatch_track	#2D finder tracks with associated ecl cluster
n_3dmatch_track	#NN tracks with associated ecl cluster
n_cluster	#ecl clusters
n_neutral_cluster	#ecl clusters w/o associated cdc tracks
n_high_300_cluster	#ecl clusters with energy larger than 300 MeV
n_high_1000_cluster	#ecl cluster with energy larger than 1GeV
n_high_2000_cluster	#ecl cluster with energy larger than 2 GeV
n_high_2000_endcap_cluster	#ecl cluster with energy larger than 2 GeV in TC ID 1,17
bbc	#back to back ecl cluster pairs
bbtc	#back to back track-eclcluster pairs
n_klm_track	#klm track
n_klm_hit	#klm hits
bhabhaveto	two track bhabha, 1: bhabha, 0:non-bhabha
sbhabhaveto	single track bhabha, 1:bhabha, 0:non-bhabha
eclbhabhaveto	eclbhabha with ecl information only, 1:bhabha, 0: non-bhabha
18 Oct 2017	Monopole searches at Belle II; Dm

Bit	Phase 2 description
0	3 or more 3D tracks
1	2 3D tracks, ≥1 within 25 cm, not a trkBhabha
2	2 3D tracks, not a trkBhabha
3	2 3D tracks, trkBhabha
4	1 track, <25cm, clust same hemi, no 2 GeV clust
5	1 track, <25cm, clust opp hemi, no 2 GeV clust
6	≥3 clusters inc. ≥1 300 MeV, not an eclBhabha
7	2 GeV E* in [4,14], not a trkBhabha
8	2 GeV E* in [4,14], trkBhabha
9	2 GeV E* in 2,3,15,16, not eclBhabha
10	2 GeV E* in 2,3,15 or 16, eclBhabha
11	2 GeV E* in 1 or 17, not eclBhabha
12	2 GeV E* in 1 or 17, eclBhabha
13	exactly 1 E*>1 GeV and 1 E>300 MeV, in [4,15]
14	exactly 1 E*>1 GeV and 1 E>300 MeV, in 2,3 or 16
15	clusters back-to-back in phi, both >250 MeV, no 2 GeV
16	clusters back-to-back in phi, 1 <250 MeV, no 2 GeV
17	clusters back-to-back in 3D, no 2 GeV

Christopher HEARTY, L1 Trigger menu for phase II and early phase III, 28thB2GM, 9-13 October 2017

Monopole searches at Belle II; Dmtirii Neverov

Trigger efficiencies

• Using default L1 trigger menu, without acceptance cuts, with phase2 background

m=4.5 GeV/c ² q=0e	g=1e	g=2e	g=3e	g=4e	g=5e
2 Tracks	0.00	0.00	4.80	43.00	32.20
Clusters b2b in ϕ	38.00	91.60	93.40	39.80	35.80
Total	39.20	97.20	98.60	88.20	88.80
m=4.5 GeV/c ² q=1e	g=1e	g=2e	g=3e	g=4e	g=5e
2 Tracks	79.20	79.60	71.40	60.20	28.40
Clusters b2b 3D	20.40	31.40	69.40	27.80	28.00
Total	95.80	94.00	93.80	90.80	87.80
g=1e q=0e	m=4.5	m=2.5	m=1.0	m=0.5	m=0.1
2 Tracks	0.00	0.00	0.00	0.00	0.00
Clusters b2b in ϕ	38.00	85.60	92.00	91.20	91.40
Total	39.20	87.40	93.40	93.40	93.20

High level trigger

Realistic strategy of HLT commissioning in Phase 2

- At the beginning of Phase 2, HLT is operated without any processing. All the events are pass-through to Storage * An intensive debugginig of "FastReco(=CDC+ECL recon)" and "Level3" is supposed to be done offline.
 * Also Rol generation is supposed to be debugged.
- 2. After FastReco(Level3) is proven to be stable, we will implement FastReco(Level3) in HLT.
 - * The software trigger by FastReco only may be turned on in case the trigger rate is too high.
 - * Debugging of full HLT script is done offline.
- 3. Then the full HLT script is implemented.
 - * FastReco trigger is turned on.
 - * But final software trigger is not turned on during Phase 2.

Towards data taking in phase2_

- No time to make tracking modifications (release-01-00-00 on Nov 1st)
- Dedicated HLT can be developed, however HLT failed events will still be stored during phase2
- Monopole simulation need to be finalised to get into release-01-00-00
- Precise trigger efficiency analysis in a wide range of parameters (m, q, g) is required for sensitivity estimations

Summary

- Previous results are 30 years ago for 2e < g < 10e
- No limits for g=1e monopole production rates by direct searches
- Monopole simulation is working
- Parasite reconstruction is working
- L1 triggers pickup signal events with high efficiency
- Can be searched for during phase 2
- Require dedicated track reconstruction for analysis
- Virtually no background because of curvature along B field

Thank you for your attention!

Searches in low charge region

105 Trigger – hits in two TOF 40¥ 104 30%/20% 10% • Cuts 0% 20% 4 or less tracks 103 Mass (GeV/c²) 30% • TOF $\Delta t < 5$ ns 10² 90 % 99.99% • d₀<0.6cm, z₀<5cm 99.9 **_**∼ 40 % 999 10 Back-to-back tracks 99% 2 99.9% 50 % Method 10- Two types of track fit 0 2 6 8 10 10² 103 4 10-1 104 105 10 $\begin{array}{ll} \mathsf{z=a_0+a_1s} \\ \mathsf{z=a_0+a_1s+a_2s^2} & F = \frac{\chi_L^2 - \chi_Q^2}{\chi_L^2/(N-3)} \end{array}$ Magnetic Charge (e a) CLEO q = 2eb) CLEO c) CLEO a=8e ISR 75, g > 50e PEP 83, g > 30e CLEO a=2e. a=0= σ(e⁺e⁻→MM) / σ(μ⁺μ⁻) ດ ο ο ο g) CLEO g = 5e, q = 0h) CLEO CLEO at CESR in 1987 • Data 25pb⁻¹ for dyons at Y(4S) 159pb⁻¹ for p>7 GeV/c monopoles at 10-4 Y(1S), Y(3S) and Y(4S)10-5 2 18 Oct 2017 Monopole searches at Belle II; Dmtirii Nev 16 MASS (GeV/c²)

Closest evidence

Two unexplained perfect Dirac monopole candidates were observed in 1982 and 1985 using superconducting rings

PhysRevLett.48.1378 (1982) Cabrera Nature vol. 321 (1986) Caplin et. al.

18 Oct 2017

Monopole searches at Belle II; Dmtirii Neverov

Other experiments

- Crystall ball measured Y $\rightarrow \ \mu^{+} \mu^{-}$ branching fraction
- Correction coefficient from MC was 0.999±0.006
- No excess of muons

- FQS search might have been sensitive to slow monopoles
- No candidates

Monopole searches at Belle II; Dmtirii Neverov

D.Fryberger vorton theory

$$\vec{\nabla} \cdot \vec{D} = 4\pi\rho_e, \qquad \qquad \vec{\nabla} \times \vec{H} - \frac{1}{c}\frac{\partial \vec{D}}{\partial t} = \frac{4\pi}{c}\vec{j_e},$$

and

$$\vec{\nabla} \cdot \vec{B} = 4\pi\rho_m, \qquad \qquad -\vec{\nabla} \times \vec{E} - \frac{1}{c} \frac{\partial \vec{B}}{\partial t} = \frac{4\pi}{c} \vec{j}_m$$

In addition to the symmetry of Maxwell equations in Minkowski space, symmetrized Maxwell equations are invariant under rotations in (e, g) plane \rightarrow dyality angle

Explicit addition of magnetic charge density + conformal group generators + Bohr-Sommerfeld quantization

Solution – configuration of field:

- No singularities
- Static spherically symmetrical
- Has topological charge \rightarrow stable
- Minimum electromagnetic charge of ~25.83e, dyality angle is a free parameter
- Another parameter vorton scale, toroid radius a
- Called vorton

Vorton pairs as particles

Magnetic counterpart of electron - magneticon

$$\frac{\mathrm{d}\sigma_{m\bar{m}}}{\mathrm{d}\Omega} = \frac{\alpha \alpha_m (\hbar c)^2 \beta^3}{4s} \left(1 + \cos^2 \theta\right)$$

- Discrete number of states
- High magnetic charge make the pair tightly bound
- Topological charge prohibits vorton annihilation
- Vorton angular momentum provides the particle spin

Example events, q=0, g=1e_

Example events, q=1, g=1e

