The highest-mass dijet event passing the angular selection (Event 753275626, Run 302347): the two central high-p_T jets have transverse momenta of 3.13 and 2.98 TeV, they have a $|y^*|$ of 0.66 and their invariant mass is 7.5 TeV.

LHC 陽子散乱の理解と QCD: トップクオーク, 新物理探索を例にとって 名古屋大学 理学研究科 物理学教室 素粒子宇宙物理学専攻 談話会 2017年 12月 6日

KOBE UNIVERSITY Science

Run: 302347 Event: 753275626 2016-06-18 18:41:48 CEST

1

神戸大学理学研究科

粒子物理研究室 山崎祐司

LHC (Large Hadron Collider) at CERN*

- 標準模型の予言する質量起源のヒッグス粒子, 標準模型を超える粒子・相互作用の発見が目的
- 世界最大,最高エネルギーの加速器
- ATLAS (日本含む), CMS 実験

周長27km (電子・陽電子衝突実験 LEPトンネルの再利用) 7TeV = 7 兆電子ボルト (1TeV = 10¹² eV)の 陽子同士の衝突 重心系エネルギー14 TeV ← 2010-12 年は 7/8 TeV → 2015-2018 (Run 2) 13 TeV 40MHz 衝突

*CERN: 欧州原子核研究所

- 11月は後半 5 TeV runなど特殊 run, 12/4 よりメンテナンス
- 8月ごろは若干不調であったが,バンチ衝突あたりの 平均衝突数を上げることで今年の目標45/fb達成
 - 2017年は,実験にやさしくない run...
- 2018 年までに 120 fb⁻¹ 以上で run2 目標達成

集中講義の内容:高エネルギーコライダー実験と QCD 一方 LHC はルミノシティーを順調にためている

測定をどう改善していくか?

トップクォーク,電弱,BSMの測定に当たって QCDがどういう役割を果たすか?

- トップクォーク質量測定
- W 質量測定
- SUSY マルチジェットイベント
 について,関連した話題も含めて

講義との重複は,ご勘弁を

LHC 実験の原理

加速器実験: 素粒子同士の衝突エネルギーで 新粒子生成

- 陽子は複合粒子
 {クォーク,グルーオン}
 = パートン 同士の散乱
- 残りは飛び去る

散乱断面積: パートン密度 *f* (*x*, μ²) の積に比例

 $\sigma \propto f(x_1,p_{T1}^2)f(x_2,p_{T2}^2)\sigma(12 \rightarrow 34)$

ハドロンコライダーの基礎過程

- 陽子の残り(ほぼすべて)は, 前方に飛び去る
- パートン散乱の 重心系エネルギー $\sqrt{\hat{s}} = \sqrt{x_1 x_2 s}$
- 移行運動量 (の負数の2乗) $\hat{t} \equiv Q^2 \sim p_T^2$

基本(再低次の摂動)は パートン・パートンの2→2散乱

パートン密度 parton distribution function

散乱断面積のふるまい

- 全断面積:緩やかに増加
- ハードな散乱:急速に増加
 パートンの増加と関連

Quark density decreasing at high-x with Q²

LHCでのプロセス

- Dijet ۲
- W, Z (Drell-Yan) ۲
 - W, Z+jets
- Top production (後に) ۲
- Diboson

Drell-Yan (W, Z)

0

QCD 2→2 dijet

ATLAS のRun1/2標準模型測定

Standard Model Production Cross Section Measurements

Status: July 2017

QCD Matrix Element: 高次の摂動 N(N)LO

Illustration: Typoform

- LO: lowest order
 - O(α^2) for Drell-Yan, O(α_s^2) for 2-jet production
- NLO: next-to-leading order
 - $O(\alpha_s^3)$ for dijets
 - 加えてループの寄与
 - 両方を加えて初めて発散が 抑えられる NLO計算の難しい理由
- どの $\alpha_{s}(\mu^{2})$ をつかう?
 - $-\mu = \mu_R$ renormalization scale
 - 本来計算はこの値に よらないが,実際はよる

Energy, GeV

Factorisation

- どこから先がハードな散乱としての高次の計算? ۲
- どこからが ISR (initial state radiation)? ۲
- 普通は factorization scale µ_F で区別
 - パートンの量 (PDF) は 大きく変わる
- 計算結果は µ_F にも よらないはず

Parton Shower

トップクォークの精密測定

- トップクォーク生成と崩壊
- トップクォーク測定の意義
- 質量測定
- 生成断面積
- 結合定数
- Single-top 生成

Top production in hadron colliders

- EW scale より重い唯一の粒子 $m_t \simeq 173$ GeV
- 対生成: 強い相互作用

 $p\bar{p}$ @ Tevatron: 7.2 pb ほぼ $q\bar{q} \rightarrow t\bar{t}$

$pp @ LHC: III gg \rightarrow t\bar{t}$

~ 820 pb @ 13 TeV 実験あたり 4000万以上作られている cf. Belle > 772 millions of Y(4s)

- single-top: 弱生成
 - LHC では大きな生成断面積

急速に増加 ← 低い運動量のグルーオンでも作れるから
 5 TeV data from CMS from 2015 data (reference *pp* run for heavy ions)

崩壊と再構成

- $t \rightarrow b + W \sim 100\%$
 - 弱い相互作用: helicity が Wへ
 - 寿命短い (Γ~1.3 GeV)
 ハドロン化の前に崩壊する
 唯一のクォーク
 - **b** クォークの純粋なサンプル b-tag, b-jet energy などの較正
- 対生成の再構成:3つのチャンネル
 - single lepton: " ℓ + jets"
 - dilepton (2 ℓ)
 - ニュートリノの運動量は mass constraints:

$$m_{\ell \nu} = m_W$$
, $m_{\ell \nu b} = m_t$ から求められる

all-hadronic (all jets)

トップ測定の意義

- LHC は "top factory"

 – 質量, カップリングの測定
- 精密測定から新物理へ
 - Remember LEP/SLC
 Higgs mass "prediction"
- きょうの信号は,
 あすのバックグランド
 - 生成メカニズム正確に知る必要あり 例えば ttH 測定のための ttZ など
- ILC は 250 GeV スタート
 - 今後10年以上,他では測れない

精密測定は(当分の間) LHC でしかできない

Top mass の測定手法

"Direct mass"

 崩壊粒子の 4-momentum から不変質量を計算

"Pole mass"

- 散乱断面積(あるいはその 形状)
 - propagator を通して断面積
 に影響がある

tt 全生成断面積とTOP++ (NNLO+NNLL)を比較して求めた

"Direct mass" 測定の現状

Best measurements are from "mature" 8TeV data, (being) published in 2016-17

• World combination (2014) 173.34 \pm 0.76 GeV (0.44%)

ATLAS best results: jets and dilepton Combination: 0.29%

CMS best results I+jets, all jets and dilepton 0.28% (0.48 GeV)

	ATLAS+CMS Preliminary LHC <i>top</i> WG	m _{top} summary, (s = 7-13 TeV	September 2017					
	World Comb. Mar 2014, [7]	total stat						
	total uncertainty	$m_{top} \pm total (stat \pm syst)$	s Ref.					
	ATLAS, I+jets (*)	172.31±1.55 (0.75±1.35)	7 TeV [1]					
	ATLAS, dilepton (*)	$173.09 \pm 1.63 \ (0.64 \pm 1.50)$	7 TeV [2]					
	CMS, I+jets	$173.49 \pm 1.06 \ (0.43 \pm 0.97)$	7 TeV [3]					
	CMS, dilepton	$172.50 \pm 1.52 \ (0.43 \pm 1.46)$	7 TeV [4]					
	CMS, all jets	173.49 ± 1.41 (0.69 ± 1.23)	7 TeV [5]					
	LHC comb. (Sep 2013) LHC top WG	173.29 \pm 0.95 (0.35 \pm 0.88)	7 TeV [6]					
	World comb. (Mar 2014)	173.34 \pm 0.76 (0.36 \pm 0.67)	1.96-7 TeV [7]					
	ATLAS, I+jets	$172.33 \pm 1.27 \ (0.75 \pm 1.02)$	7 TeV [8]					
	ATLAS, dilepton	173.79 ± 1.41 (0.54 ± 1.30)	7 TeV [8]					
	ATLAS, all jets	■ 175.1±1.8 (1.4±1.2)	7 TeV [9]					
	ATLAS, single top	172.2 ± 2.1 (0.7 ± 2.0)	8 TeV [10]					
	ATLAS, dilepton	172.99 ± 0.85 (0.41± 0.74)	8 TeV [11]					
	ATLAS, all jets	173.72 ± 1.15 (0.55 ± 1.01)	8 TeV [12]					
	ATLAS, I+jets	$172.08 \pm 0.91 \ (0.38 \pm 0.82)$	8 TeV [13]					
	ATLAS comb. (^{Sep 2017}) H ▼H	172.51 \pm 0.50 (0.27 \pm 0.42)	7+8 TeV [13]					
	CMS, I+jets	$172.35 \pm 0.51 \ (0.16 \pm 0.48)$	8 TeV [14]					
	CMS, dilepton	172.82 ± 1.23 (0.19 \pm 1.22)	8 TeV [14]					
	CMS, all jets	$172.32 \pm 0.64 \ (0.25 \pm 0.59)$	8 TeV [14]					
	CMS, single top	$172.95 \pm 1.22 \ (0.77 \pm 0.95)$	8 TeV [15]					
	CMS comb. (Sep 2015)	172.44 \pm 0.48 (0.13 \pm 0.47)	7+8 TeV [14]					
	CMS, I+jets	$\begin{array}{c} 172.25 \pm 0.63 & (0.08 \pm 0.62) \\ 17Las-CONF-2013-07 & [7] arXiv:1603.4427 \\ 17Las-CONF-2013-077 & [8] Eur-Phys.J.C75 (2015) 330 \\ 19LEP 12 (2012) 105 & [9] Eur-Phys.J.C75 (2015) 158 \\ 19LEV-Phys.J.C72 (2012) 202 & [10] ATLAS-CONF-2013-055 \\ 10L-Phys.J.C74 (2014) 2758 & [11] Phys.Lett.B761 (2016) 350 \\ 12Las-CONF-2013-102 & [12] arXiv:1702.07546 \\ \end{array}$	13 TeV [16] [13] ATLAS-CONF-2017-071 [14] Phys.Rev.D59 (2016) 072004 [15] EPJC 77 (2017) 354 [16] CMS-PAS-TOP-17-007					
L			105					
	10011000		185 21					
	m _{top} [Gev]							

hadronic decay を用いた測定

•
$$m_W$$
 との比 $R_{3/2} = \frac{m_{jjb}}{m_{jj}} \simeq \frac{m_t}{m_W}$ を求める
- jet energy scale (JES) 依存性を減らす

- 173.72 ± 0.55 (stat.) ± 1.01 (syst.) GeV
 - 主な系統誤差: JES (0.64 GeV)
 - ハドロン化モデル(0.60 GeV)

1702.07546

PRD 93 (2016) 072004

Kinematic fit による質量算出

- すべての終状態オブジェクトから 質量を終状態にして likelihood により 最適値をイベントごとに算出
- ・ Jet energy scale factor (JSF) がキモ
 - JSF と *m*top を同時に決定, または
 - 別のサンプルでWを含むものと同じ重みで ファクターを決定 (hybrid method)

< 0.3 GeV に向けて

	Analysis (syst. error)	1 st source (error)	2 nd source (error)	3 rd source (error)
	ATLAS dilepton (0.74)	Jet energy scale	<i>b</i> -jet energy scale	ISR and FSR
	PLB 761(2016)350	(0.54)	(0.30)	(0.23)
今の記録	ATLAS all hadron (1.01)	Hadronisation	Jet energy scale	<i>b</i> -jet energy scale
0 49 GeV	arXiv: 1702.07546	modelling (0.64)	(0.60)	(0.34)
	CMS lepton+jets (0.49)	<i>b</i> -jet energy scale	Matrix element	Jet energy
	PRD 93(2016)072004	(0.32)	generator (0.12)	correction (0.12)
	CMS dilepton (1.22)	μ_R, μ_F	b-fragmentation	<i>b</i> -jet energy scale
	PRD 93(2016)072004	(0.75)	(0.69)	(0.34)
	CMS all hadron (0.59)	<i>b</i> -jet energy scale	Background	In situ jet
	PRD 93(2016)072004	(0.29)	estimation (0.20)	energy scale (0.19)

experimental

model dependence

(実験的誤差)≈(モデル依存性からくる誤差)

- 異なる mass reconstruction の手法を試す
- 測定により使用する event generator モデルに制限を

– e.g. parton shower, hadronisation ...

今までのクォーク質量測定は中間子 (J/ ψ など)

- 崩壊粒子が「どれか」決まっている
- 輻射 (J/ $\psi \rightarrow \mu\mu\gamma$ など) もよくわかっている

Direct mass によるバイアス

- トップクォークの崩壊粒子はパートン
 - ジェットからもれ出す (**FSR**)
 - colour reconnection で崩壊エネルギー・
 パターンが変化
 - ISR multi-parton interactions で
 エネルギーが増加

 さらに、トップ崩壊を 内線と見なすと、
 Breit-Wignerの形が変形する可能性もある

ā

U

W

h

レプトンだけによる トップ質量再構成 **b-jet** $\rightarrow J/\psi \rightarrow \ell\ell$ と $W \rightarrow \ell\nu$ の組合せ

b-jet fragmentation は不定性が あるかと思うが、そうでもない

断面積の形状から (lepton kinematics)

トップ質量測定のまとめ

Direct がやはり精度よい レプトンを使った方法, Pole mass と よく合っているが, 誤差大きい

ATLAS direct (dilepton)	172.99 ± 0.85
CMS direct (I+jets)	172.35 ± 0.51
CMS J/ ψ	$173.5 \pm 3.0 \pm 0.9$
ATLAS dilepton σ shape	173.2 ± 1.6
CMS $\sigma(t\bar{t})$	$173.8^{+1.7}_{-1.8}$

今後の展望

- ・ direct mass: jet/b-jet JES も依然重要
- トップ運動量分布など、perturbative QCD の理解
 まだスケール不定性が大きい ~ やっぱり高次の計算がほしい

0.3 GeV の精度に向けて, さらなるトップ生成の QCD による理解が不可欠

微分散乱断面積測定

- モデルと直接比較できる物理量
 - 検出器の測定量を "Particle level" に補正, 直接モデルの予言と比較できる パートンへ直接補正するより,モデル依存性少ない 比較により,パートンシャワー, MC tuning 結果などと比較
 - 他の測定の系統誤差を減らせる
- トップ生成そのものが、BSM にも感度
 特に high- p_T = highly-boosted top
- 多くの場合, top は BSM 探しのバックグランドにも
 正確な理解が大切

ジェットに崩壊する 重い粒子の質量再構成

- LHC では、重いトップクォークでも 運動量が大きければ、崩壊物が 狭い範囲に収まる
- 一つの「ジェット」の内部構造から 複数の崩壊クォークを選り分け、 親クォーク(トップ)の質量を計算

Recent 13 TeV measurements (1)

- All-hadronic 崩壊 (14.7 fb⁻¹)
- Boosted top のみを用いた
 内部構造の「3-jet らしさ」で選別
- $p_T^{top} \sim 1 \text{ TeV}, m_{tt} > 2 \text{ TeV}$
- 系統誤差:パートンシャワー

(from JHEP09(2013)076: note that this analysis does somewhat differently to tag boosted top)

ATLAS-CONF-2016-100

13 TeV 精密測定

<u>CMS-PAS-TOP-16-014</u>

- トップクォークの運動量の代わりに、崩壊粒子の運動量を用いる
 - できるだけトップ崩壊にまつわる理論的不定性を小さくし、
 感度を上げる
- 測定データは高い p_T でデータが NLO より少ない傾向 →

他の 13TeV 測定でも似たような傾向...

- トップの *p_T* はNLO の予言より小さい傾向
 - NNLO でよくなるという study あり

- エネルギーが tī 以外のところにいっている?

EPJC 77(2017)220

$t\bar{t} + jets @ 13 TeV$

 結果はモデルのチューニングに用いる (パートンシャワーの大角度抑制など)

さらなる精度向上に向けて測定を続けていく

Single-top のプロセスと断面積

統計誤差は t-channel, Wt では生成断面積測定には十分

- 他変数解析は上記2チャンネルではなくてもいける

t-channel: 微分断面積, flavour scheme

4-flavour scheme

- t-channel トップを作るには始状態にbクォーク必要
 - 陽子中に intrinsic b-quark (5-Flavour Scheme, 5FS) か?
 それともグルーオンから動的に生成するか (4FS)?
 この2つのダイアグラムを適切にたしあわせるひつようあ理
- $p_T(t \text{ or } t)$ が, 将来ひょっとすると役に立つかも

Wの質量と QCD

Wの質量測定と QCD

・ 測定方法:ヤコビアンピークを見る もし LO だけなら, $p_T^W = 0$ → $p_T^\ell < m_W/2$ にエッジ

 $\rightarrow m_T = \sqrt{2p_T^{\ell} p_T^{miss} (1 - \cos \Delta \phi)} < m_W$ にエッジ

- 事象選別:LO-like な事象を選ぶ
 u_T < 30 GeV: レプトン以外の 観測された横運動量の和
- ・ 検出器のキャリブレーション: $Z \rightarrow \ell^+ \ell^-$ を用いる

最終的な systematic error to W mass

Uncertainty from p_T^ℓ measurement	W ightarrow e v	$W o \mu \nu$	total
EW correction (FSR, weak, I/F interf.)	4.9	5.6	
Detector calibration	14.2 (energy scale, efficiencies)	9.8 (momentum scale)	
	W^+	W^{-}	combined
Recoil (u_T reconstruction) correction	2.6	2.7	2.6
Background	6.0/4.3 (e/μ)	6.8/5.3 (e/μ)	
PDF uncertainties	13.1	12.0	8.0
"AZ tune" W transverse momentum	3.0	3.0	3.0
PS, different μ_F in HFL schemes	5.0	5.0	5.0
Angular coefficients	5.8	5.8	5.8
Theory total	15.9	14.8	11.6

• Result: $m_W = 80370 \pm 7(stat.) \pm 11(exp.) \pm 14(model syst.)$ = 80370 ± 19 MeV

₩+ と ₩- の差

- LHC は pp (pp でない)
- W^+ は valence quark おおい $u_v \bar{d} \rightarrow W^+$ vs $d_v \bar{u} \rightarrow W^ W^+$ の方が rapidity 分布広い p_T^W 小さい
- Heavy quark からもできる
 b/c quark は, active flavour (もともと proton に 含まれている) か, gluon から dynamic に生成かで
 - Second Second

高次の計算では

W からのレプトンの分布は
 model によって不定性がある

理由 1: 崩壊角

QCD 計算高次の補正がある

理由 2: 横方向運動量 *p^W*分布 ME と PS とのマッチングに起因

Z⁰の崩壊角測定

- LOでは A₄のみ
- A₂が理論で再現されていない → 補正の必要あり

42

Drell-Yan $p_T^{\ell\ell}$ と " ϕ_η^* " による recoil 測定

- Drell-Yan lepton 対の p_T はパートン放射のモデルの詳細で変わる
 特に, soft -> hard の受け渡し
- $\phi_{\eta}^* = \tan\left(\frac{\pi \Delta \phi}{2}\right) \cdot \sin\left(\theta_{\eta}^*\right) \simeq \frac{p_T^{\ell \ell}}{\sqrt{2}M_{\ell \ell}}$

- レプトンの角度のみを用いた測定で,正確に測定可能

Eur. Phys. J. C 76(5), 1-61 (2016)

RESBOS (approximate NNLO+NNLL soft gluon) と比べると, 弱ボゾンの質量領域の上,下でそれぞれ違うパターンでずれが見られる⁴³

弱ボゾンの rapidity による依存性

- モデルは rapidity 依存性のだいたいの 傾向は知っている
- ズレのパターンも、あまりrapidity に 依存していない

様々なモデルとの比較

- モデルごとかなり違う予言
 - Powheg+Pythia and +Herwig
 - Powheg and Sherpa
 - … and RESBOS

Factorisation は, 難しい

W mass 結果

1σ 以内で一致。
 標準模型よ、どこへ行く

新物理探しでの QCD

BSM search での バックグランド

- QCD はだいたい事象を記述している これまでの話も細かい話でした
- BSM の場合は,違った意味での細かい話:レア事象 位相空間のはじっこでどうなるか
- 例:
 - やたら多いジェット(NLO + Parton shower でいけるか)
 - 重いクォーク生成 (radiated $g \rightarrow Q\bar{Q}$ 多い) レプトン信号のバックグランドにもなる
 - トップクォーク
 レプトン, b quark, マルチジェット 何でも出す
 Missing も出す
- 再構成、アルゴリズムによる工夫でバックグランドを減らすが 最後に残ったのは変なイベント
- シミュレーションはあまり信頼できない

データによるバックグランド推定

- シミュレーションは、パートンシャワーにより位相空間を 埋めてはいる、と考える
- ただし,量は間違っているかも
 - 絶対量:もちろん正しくない (higher order correction)
 - 相対量:大角度の QCD radiation の 相対量は、パートンシャワーの 不得意とするところ、やはり あまり正しくない でも、近傍から外挿すれば、 だいたいOKかもしれない

例: ATLAS OL + Etmiss + \geq 7jet search

- Classic SUSY から多数のジェット
 - 強い相互作用をする粒子は重いが, TeV 領域
 - gaugino/higgzino がまばらに質量分布 (カスケード崩壊)
 - 特に重い neutralino/chargino が
 Higgsino-like だと終状態にトップが出る
 - 3. または stop 経由で top が多数生成 (3-4 top)
 - 4. (classic でない) R-Parity violated model 一般に最後の R-parity breaking 崩壊は 見える粒子が増える

信号領域 (SR)と control region (CR) SR:

- ・ Lepton なし
- Large Etmiss: $E_{Tmiss}/\sqrt{H_T} > 5 \text{ GeV}^{\frac{1}{2}}$ H_T : jet p_T のスカラー和
- たくさんのジェット

 (≥ (7),8,9,10,11)
 または
 たくさんのジェットと(≥ 8,9,10)
 質量の重いジェット1つ
 - (> 340, 500 GeV)
 - 重い中間状態がブーストされると
 複数のジェットがまとまる

Multijet CR: 6 jet, $E_{Tmiss}/\sqrt{H_T}$ < 1.5 GeV¹/₂

Validation region (VR): 7 jet, $E_{Tmiss}/\sqrt{H_T} > 5 \text{ GeV}^{\frac{1}{2}}$

実はバックグランドには*tī*, W + jets も多い

tī, W + jets の見積

- Lepton を要求して control region を設定
- *tī*, W+jets の区別は b-quark があるか (top) ないか (W)

Systematic error と結果

- Multijet: up to 18% in SR # of events ۲
 - Heavy flavour composition (b-enriched), H_T dependence: データから見積もった
- Top: 10-25 % : jet の数に関するもの
 - Generator 依存性
 - ME PS マッチング
 - PS モデル など

他の解析の例

0-Lepton + 2-6 jets SUSY search (中浜さん, 佐野君も)

ME 系の誤差が大きい
 scale factor: ジェットが大きいほど小さくなる:
 理論は multijet が多すぎるようである

まとめ

- LHC での精密測定には、QCD の理解が欠かせない
 W は ILC で測れるが、top は向こう 20 年 LHC のデータから
- Top mass, W の測定には Soft-hard の境界の物理が効いている
 - Jet fragmentation, parton shower modelling (top mass)
 - W p_T , ISR (W mass)
 - PDF (W mass)
- いろんな測定で、Matrix Element, Parton Shower の 不定性も効いている
 - N(N)LO uncertainty (top mass, SUSY searches)
- とはいえ, Generator は一昔前から格段の進歩, まだまだいけます

Boosted object の系統誤差

- Event selection の効率見積が generator によってまちまち
 - 何か再現できていない