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The AI Revolution is Here

The past decade has seen remarkable advances in machine learning and 
artificial intelligence.  

These technological breakthroughs are reshaping the world around us.

Deep learning also has the potential to revolutionize physics at the LHC. 



Deep Learning Breakthrough



Deep Learning Breakthrough

In 2012, a deep convolutional neural network won the “ImageNet” image 
classification competition by a huge margin (Krizhevsky, Sutskever, Hinton)

This dramatic breakthrough inaugurated the modern revolution in deep learning. 

# of parameters 1000 x LeNet (60M). Required training on a GPU.

“AlexNet”
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Natural language



Generative modeling



Game playing



Game playing



Plan of the lecture

1. Machine Learning Basics

2. Intro to Deep Learning

3. Deep Learning at the LHC

I will assume most of you know some collider physics.

I will not assume any familiarity with machine learning 
or neural networks.



1. Machine learning basics
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Brief (re)fresher on machine learning

“ML is glorified function fitting”

“supervised ML”

• Classification

• Regression

• Clustering

• Anomaly detection

• Density estimation

P (x) = 0.5 ⇤N (x|µ = (0,�1.5),� = (1, 1))

+ 0.5 ⇤N (x|µ = (0,+1.5),� = (1, 1))
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Brief (re)fresher on machine learning

“ML is glorified function fitting”

“supervised ML”

• Classification

• Regression

• Clustering

• Anomaly detection

• Density estimation

• Generation

“unsupervised ML”

Want to fit a function f(x; θ) with some parameters θ (“weights”) to a 
collection of examples {xi} in order to achieve some objective. 

Some typical objectives:



MNIST example

image database of 70,000 handwritten digits



MNIST example

x
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parameters of 
fitting function

Output: probability it’s a 0, 1, …,9 
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P9(x; ✓)
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Input: handwritten digit image

28x28 pixel intensities

from MNIST database
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Brief (re)fresher on machine learning

“ML is glorified function fitting”

Want to fit a function f(x; θ) with some parameters θ (“weights”) to a 
collection of examples {xi} in order to achieve some objective. 

How to perform the fit? 

Minimize a loss function! Loss function quantifies how well the objective 
has been achieved.

Data is labeled

supervised ML unsupervised ML

Data is not labeled

X

(x,y)

L(P (x; ✓), y)
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“mean-squared error”
used for regression

“binary cross entropy”
used for binary classification

“categorical cross entropy”
used for multi-class classification

L = (P (x; ✓)� y)2
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Examples of loss functions
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Examples of loss functions

MNIST example:
 labels “one-hot encoding”

0 →[1,0,…,0]
1 → [0,1,…,0]

…
9 → [0,0,…,1]



Minimizing the loss function

 

Highly nonconvex function over a many-dimensional space. 
Many local minima.

https://www.cs.umd.edu/~tomg/projects/landscapes/


Gradient descent

Want to minimize wrt   . 

Obvious idea:

✓
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↵ : “learning rate”
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source: Wikipedia

“gradient descent method”
(generalization of Newton-Raphson method)



Gradient descent: problems

Downsides to gradient descent: 

• average over full dataset <L(θ)> can be expensive to compute

• poor initial guess or learning rate can lead to becoming stuck in poor local minimum



Stochastic Gradient Descent

Can actually improve convergence by 
using noisy estimator of gradient!

X

(x,y)2full dataset

L(P (x; ✓), y)
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Stochastic Gradient Descent

Method: 

1.  Divide up training data into minibatches. 

2.  Update weights minibatch by minibatch  
 
 
 

3.  Repeat until convergence.

✓ ! ✓ � ↵@✓hLi(✓)
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Stochastic Gradient Descent

Method: 

1.  Divide up training data into minibatches. 

2.  Update weights minibatch by minibatch  
 
 
 

3.  Repeat until convergence.

✓ ! ✓ � ↵@✓hLi(✓)
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(average computed on each minibatch)

minibatch 1
minibatch 2
minibatch 3

…

“one epoch”



Overfitting

The fitting function (especially if it is a neural network) may be 
overparametrized. So overfitting is a major concern.



Overfitting

Many ways to mitigate overfitting problem. Eg early stopping.

Key concept: train/val/test split

Val
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Brief (re)fresher on machine learning

“ML is glorified function fitting”

Want to fit a function f(x; θ) with some parameters θ (“weights”) to a 
collection of examples {xi} in order to achieve some objective. 

Finally, what functions to use?

Current trend: deep neural networks!



2. Intro to Deep Learning



What is a (deep) neural network?

Modeled on biological systems

Basic building block of a neural network:



Activation functions

NNs need a source of non-linearity so they can learn general functions. 

This is usually implemented with the activation function.

Sigmoid used to be standard. But this led to the vanishing gradient problem. The 
ReLU activation was invented to solve this problem. Now it is the standard.



“Fully connected” or “Dense” Neural Network

P = A(3)(w(3)
k A(2)(w(2)

kj A
(1)(w(1)

ji xi + b(1)j ) + b(2)k ) + b(3))
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Expressiveness

One reason why NNs “work” is that 
they are universal function approximators 
(asymptotically)

Can fit any function with a single, infinitely-wide hidden layer



Deep neural networks

Expressivity of a neural network increases exponentially with the 
number of layers (Delalleau and Bengio, 2011, Montufar et al 1402.1869, 
Ganguli et al 1606.05336, 1606.05340)



End-to-end learning
From

 tow
ardsdatascience.com

Universal function approximation and high expressivity means that deep NNs 
can learn abstract concepts from low-level, high-dimensional inputs

“Automated feature engineering”

“End-to-end learning”



Example: MNIST in more detail

x
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_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense_1 (Dense)              (None, 512)               401920    
_________________________________________________________________
dropout_1 (Dropout)          (None, 512)               0         
_________________________________________________________________
dense_2 (Dense)              (None, 512)               262656    
_________________________________________________________________
dropout_2 (Dropout)          (None, 512)               0         
_________________________________________________________________
dense_3 (Dense)              (None, 10)                5130      
=================================================================
Total params: 669,706
Trainable params: 669,706
Non-trainable params: 0

val loss

train loss

Test accuracy: 0.9831

prediction: 7 2 1 0 4 1 4 9 6 9

Example: MNIST in more detail



Principal neural network architecture for image recognition.  
Invented in 1998 (LeCun, Bottou, Bengio, Haffner)

Achieved 99% accuracy on MNIST!

However, CNNs fell out of favor (until AlexNet in 2012) when they did 
not immediately generalize well to more complex image recognition 
tasks such as ImageNet.

Convolutional neural network (CNN)



Main idea: features in an image (edges, curves, corners,…eyes, noses,…) 
are the same no matter where they occur.

Goal: Want to find these features in a translationally invariant way.

Solution: Drag or convolve a “filter” across the image that selects out 
interesting features.

Convolutional neural network (CNN)



Main idea: features in an image (edges, curves, corners,…eyes, noses,…) 
are the same no matter where they occur.

Goal: Want to find these features in a translationally invariant way.

Solution: Drag or convolve a “filter” across the image that selects out 
interesting features.

Convolutional neural network (CNN)



“feature map”

Finds features in the image in a translation invariant way

“Convolutional filter”

“elementwise multiplication”

Convolutional neural network (CNN)



Can apply multiple filters to image to produce a stack of feature maps

Convolutional neural network (CNN)



CNNs typically end with fully connected layers. 

These are thought to extract the highest level information and to perform 
the actual classification task on the feature maps found by the convolutional 
layers.

Convolutional neural network (CNN)



What does the machine learn?

Convolutional neural network (CNN)



Generative Adversarial Networks (GANs)

Breakthrough method in generative modeling and unsupervised learning 
(Goodfellow et al. 2014)

Idea: train two neural networks: a “generator” that attempts to 
generate fake, random images, and a “discriminator” that tries to 
tell them apart from a database of real images.



Generative Adversarial Networks (GANs)

Training is performed “adversarially”

• Discriminator tries to minimize loss

• Generator tries to maximize loss

• Take turns training discriminator and generator to optimize fake image generator

LGAN =
X

x2real

logD(x) +
X

z2random

log(1�D(G(z)))
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Generative Adversarial Networks (GANs)

Real or fake?



3. Deep Learning at the LHC



LHC and Big Data
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LHC and Big Data

• 600 million collisions per second

• Raw data rate ~ 1 PB/s (1 PB=10^6 GB)

• Actual data rate ~ 25 GB/s 

• Need to trigger on 1 out of 40,000 events

• ~ 10’s of PB annually

The data is 

• large (billions of events on tape)

• complex (hundreds of particles 
per event)

• well-understood (Standard Model 
of particle physics).

Also, it is relatively easy to 
generate realistic simulated 
data.

The LHC is a great setting 
for deep learning!



Deep Learning Papers
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An explosion of interest in machine learning!



The Landscape of DL @ LHC
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The Landscape of DL @ LHC

Machine 
Learning

Unsupervised 
Learning

Supervised 
Learning

Regression

Anomaly 
Detection

Classification

top tagging
b tagging

W/Z tagging
q/g tagging

strange tagging
full event tagging

reweighting (DCTR)
Omnifold

pile-up reduction

Generation

Dimensionality 
Reduction

CaloGAN
LaGAN
JUNIPR
i-flow

GANs for unfolding

Autoencoders
CWoLa

LDA
AnoDE
SALAD

Triggering

Autoencoders

Clustering

Jet finding
algorithms (labeled data)(unlabeled data)

Stay tuned for many exciting talks on these topics 
(and more) at this workshop!

EFT parameter 
estimation



 9Jesse Thaler (MIT) — Collision Course: Particle Physics as a Machine-Learning Testbed

100 MeV++

1.3 GeV++

4.2 GeV++

0++

173 GeV++

80/91 GeV

u,d,s

c

b

g

•

•

t
•

W/Z

H •
• 125 GeV

Jets from QCD and
the Standard Model

micro-jet
≈ 70%

≈ 70%

≈ 60%

≈ 65%

++ = Mass from QCD Radiation
slide credit: J. Thaler

Jet classification (“tagging”)

See talks by Michael Kagan and Tilman Plehn



QCD boosted jet

g

q

q̄

vs.
How to differentiate between 
these two types of jets?

A popular example: boosted top tagging



12 4 Distribution of Top Tagging Discriminating Variables
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Figure 4: Distribution of the HTT V2 candidate mass (top), fRec (center) and DRopt (bottom) for
low pT jets (left) and high pT jets (right) reconstructed using CA15 jets. The percentage in the
legend indicates the fraction of entries shown in the plot with respect to the fiducial selection.
Events correspond to an average number of hµi = 20 pileup interactions and a bunch spacing
of 25 ns.
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Figure 3: Distribution of ungroomed n-subjettiness (top) at low pT (left) and high pT (right).
In addition, the softdrop n-subjettiness (bottom left) and the Qjet volatility (bottom right) are
shown for low pT jets clustered using CA15 jets. All distributions are shown after selecting on
the jet mass. The percentage in the legend indicates the fraction of entries shown in the plot
with respect to the fiducial selection. Events correspond to an average number of hµi = 20
pileup interactions and a bunch spacing of 25 ns.

Applying softdrop grooming before calculating the n-subjettiness clearly improves the discrim-
ination power for lower pT jets, especially for top quarks with a pT around 400 GeV, as shown
in Fig. 3 (bottom left). At the same time, for AK8 jets, the groomed n-subjettiness shows a more
stable performance as a function of the jet pT with respect to ungroomed one.

Finally, the Qjet volatility exhibits lower values for true top quarks, where the decay of a heavy
particle is responsible for the jet mass, than for backgrounds, where the clustering of radia-
tion into the jet dominates. However, after requiring a soft drop mass between 150 and 240
GeV (Fig. 3 bottom right), most of the separation power disappears. The deviation from one in
the efficiency reported in Fig. 3 is dominated by the applied softdrop mass selection.

Some obvious ideas: 

jet mass (mtop vs 0) jet substructure (3 vs 1)

QCD boosted jet

g

q

q̄

vs
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top tagging efficiency

QCD jet 
mistag rate

State of the art with cuts on kinematic quantities:

Can deep learning do better??

“ROC curve”



Jet images
Cogan et al 1407.5675, Almeida et al 1501.05968, de Olivera et al 1511.05190

Machine Learning and Jets

• We can represent jets in different ways
• We can utilize different classes of  models

10

Calorimeter

Image	from	B.	Nachman

Jet Images 12

Unrolled	slice	of	detector

Calorimeter	towers	as	pixels
Energy	depositions	as	intensity

Slide	from	B.	Nachman

Jets are naturally images in eta and phi. 

Should be able to apply “off-the-shelf” NNs developed for image 
recognition to classify jets at the LHC! de Oliveira et al 1511.05190

Figure credit: 
B. Nachman



RecNN for Jets
Motivated by: 
• problems in image approach: sparsity of jet images (5% - 10% active), 

fixed image size, (information loss from pixelization) 
• natural tree-like structure of sequential jet clustering history 
• implementation in event-level

jet tree structureRecNN

Other jet representations
Many other ways to represent a jet besides jet images!

Network structure 

�  Input width fixed: up to 120 constituents, 0-padded 

�  ‘ReLU’ activation function in hidden layers 

�  Logistic ‘sigmoid’ activation output 

�  Binary cross entropy loss function 

2017-12-11 W. Fedorko LBNL jet workshop 5 

5 hidden layers 
300,150,50,10,5 

nodes / hidden layer 

… … … 

input layer 

output 
node 

pT
1 

�1 

�1 

�N 

0 

ReLU 

0 

1 
sigmoid 

Interpret as 
probability 
of  class 
being ‘1’ 

Activation functions 

Ordering revisited 
�  View anti-kT sequence as a binary tree 

�  Order using depth-first traversal prioritizing jets 
with ‘parents’ whose dij is smaller  

2017-12-11 W. Fedorko LBNL jet workshop 15 
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CONVOLUTION ON POINT CLOUDS

Convolution on point clouds: EdgeConv [arXiv:1801.07829] 
treating a point cloud as a graph:  

each point is a vertex 

for each point, a local patch is defined by getting the K-nearest neighbors to it 

distance defined based on the point “coordinates” 

designing a symmetric “convolution” function 

define “edge feature” for each center-neighbor pair: eij = hΘ(xi, xj) 

same hΘ for all neighbor points, and all center points, for symmetry 

aggregate the edge features in a symmetric way: xi’ = Σj eij

 13
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JET AS A PARTICLE CLOUD

 8

simulated top quark jet
anti-kT, R = 0.8, pT = 600 GeV

Lists of 4-vectors
Sequences

Trees

GraphsPoint clouds

Jet Shapes

 17

• Heavy resonances / Quark-Gluon

• Energy Flow Polynomials: A complete 
linear basis for jet substructure 
(1712.07124)

• Reports of My Demise Are Greatly 
Exaggerated: N-subjettiness Taggers Take 
On Jet Images (1807.04769)

• Identification of High-Momentum Top 
Quarks, Higgs Bosons, and W and Z 
Bosons Using Boosted Event Shapes 
(1606.06859)

Feature engineering of useful quantities. 
Especially nice if we can find a basis.

N-body phase space

BEST

Energy Flow Polynomials

Kinematic 
invariants



Community top tagging comparison
Kasieczka, Plehn et al 1902.09914

A: Let’s perform an apples-
to-apples comparison of 
various top taggers on a 
common dataset!

SciPost Physics Submission

Figure 5: ROC curves for all algorithms evaluated on the same test sample, shown as the
AUC ensemble median of multiple trainings. More precise numbers as well as uncertainty
bands given by the ensemble analysis are given in Tab. 1.

Instead of extracting these performance measures from single models we can use ensembles.
For this purpose we train nine models for each tagger and define 84 ensemble taggers, each time
combining six of them. They allow us to evaluate the spread of the ensemble taggers and define
mean-of-ensemble and median-of-ensemble results. We find that ensembles leads to a 5 ... 15%
improvement in performance, depending on the algorithm. For the uncertainty estimate of the
background rejection we remove the outliers. In Tab. 1 we see that the background rejection
varies from around 1/600 to better than 1/1000. For the ensemble tagger the ParticleNet,
ResNeXt, TreeNiN, and PFN approaches again lead to the best results. Phrased in terms
of the improvement in the signal-to-background ratio they give factors ✏S/✏B > 300, vastly
exceeding the current top tagging performance in ATLAS and CMS.

Altogether, in Fig. 5 and Tab. 1 we see that some of the physics-motivated setups remain
competitive with the technically much more advanced ResNeXt and ParticleNet networks.
This suggests that even for a straightforward task like top tagging in fat jets we can develop
e�cient physics-specific tools. While their performance does not quite match the state-of-
the-art standard networks, it is close enough to test both approaches on key requirements in
particle physics, like treatment of uncertainties, stability with respect to detector e↵ects, etc.

The obvious question in any deep-learning analysis is if the tagger captures all relevant
information. At this point we have checked that including full or partial information on

15

Q: There are many papers 
developing jet taggers with 
different jet representations 
and architectures. How can 
we evaluate their relative 
strengths and weaknesses?



Community top tagging comparison
Kasieczka, Plehn et al 1902.09914SciPost Physics Submission

AUC Acc 1/✏B (✏S = 0.3) #Param
single mean median

CNN [16] 0.981 0.930 914±14 995±15 975±18 610k
ResNeXt [31] 0.984 0.936 1122±47 1270±28 1286±31 1.46M

TopoDNN [18] 0.972 0.916 295±5 382± 5 378 ± 8 59k
Multi-body N -subjettiness 6 [24] 0.979 0.922 792±18 798±12 808±13 57k
Multi-body N -subjettiness 8 [24] 0.981 0.929 867±15 918±20 926±18 58k
TreeNiN [43] 0.982 0.933 1025±11 1202±23 1188±24 34k
P-CNN 0.980 0.930 732±24 845±13 834±14 348k
ParticleNet [47] 0.985 0.938 1298±46 1412±45 1393±41 498k

LBN [19] 0.981 0.931 836±17 859±67 966±20 705k
LoLa [22] 0.980 0.929 722±17 768±11 765±11 127k
LDA [54] 0.955 0.892 151±0.4 151.5±0.5 151.7±0.4 184k
Energy Flow Polynomials [21] 0.980 0.932 384 1k
Energy Flow Network [23] 0.979 0.927 633±31 729±13 726±11 82k
Particle Flow Network [23] 0.982 0.932 891±18 1063±21 1052±29 82k

GoaT 0.985 0.939 1368±140 1549±208 35k

Table 1: Single-number performance metrics for all algorithms evaluated on the test sample.
We quote the area under the ROC curve (AUC), the accuracy, and the background rejection
at a signal e�ciency of 30%. For the background rejection we also show the mean and median
from an ensemble tagger setup. The number of trainable parameters of the model is given as
well. Performance metrics for the GoaT meta-tagger are based on a subset of events.

the event-level kinematics of the fat jets in the event sample has no visible impact on our
quoted performance metrics. We can then test how correlated the classifier output of the
di↵erent taggers are, leading to the pair-wise correlations for a subset of classifier outputs
shown in Fig. 6. The correlation matrix is given in Tab. 2. As expected from strong classifier
performances, most jets are clustered in the bottom left and top right corners, corresponding
to identification as background and signal, respectively. The largest spread is observed for
correlations with the EFP. Even the two strongest individual classifier outputs with relatively
little physics input — ResNeXt and ParticleNet — are not perfectly correlated.

Given this limited correlation, we investigate whether a meta-tagger might improve per-
formance. Note that this GoaT (Greatest of all Taggers) meta-tagger should not be viewed
as a potential analysis tool, but rather as a benchmark of how much unused information is
still available in correlations. It is implemented as a fully connected network with 5 layers
containing 100-100-100-20-2 nodes. All activation functions are ReLu, apart from the final
layer’s SoftMax. Training is performed with the Adam [30] optimizer with an initial learning
rate of 0.001 and binary cross-entropy loss. We train for up to 50 epochs, but terminate if
there is no improvement in the validation loss for two consecutive epochs, so a typical training
ends after 5 epochs. The training data is provided by individual tagger output on the previous
test sample and split intro three subsets: GoaT-training (160k events), GoaT-testing (160k
events) and GoaT-validation (80k events). We repeat training/testing nine times, re-shu✏ing
the events randomly between the three subsets for each repetition. The standard deviation
of these nine repetitions is reported as uncertainty for GoaT taggers in Tab. 1. We show two
GoaT versions, one using a single output value per tagger as input (15 inputs), and one using

16

Have we found the optimal tagger?? 



CMS performance study
JME-18-002-PAS

7. Performance in simulation 23
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Figure 11: Performance comparison of the hadronically decaying t quark identification algo-
rithms in terms of receiver operating characteristic (ROC) curves in two regions based on the
pT of the truth particle; Left: 300 < pT < 500 GeV, and Right: 1000 < pT < 1500 GeV. Addi-
tional fiducial selection criteria applied to the jets are displayed on the plots.
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Figure 12: Performance comparison of the hadronically decaying W boson identification al-
gorithms in terms of receiver operating characteristic (ROC) curves in two regions based on
the pT of the truth particle; Left: 300 < pT < 500 GeV, and Right: 1000 < pT < 1500 GeV.
Additional fiducial selection criteria applied to the jets are displayed on the plots.



CMS performance study
JME-18-002-PAS
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Figure 42: The ratio of the misidentification rate of t quarks in data and simulation in the di-jet
(upper and middle rows) and the single-g (lower row) samples. The QCD multijet process is
simulated using MADGRAPH for the hard process and PYTHIA for parton showering (upper)
and HERWIG++ for both (middle).
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Figure 40: Summary of the SFs measured for each of the t quark identification algorithms.
The markers correspond to the SF value, the error bars to the statistical uncertainty on the SF
measurement, and the band is the total uncertainty (statistical + systematic).

9 Summary
A review of the heavy object tagging methods recently developed in CMS has been presented.
Tagging algorithms based on theory inspired higher-level observables, which were studied in
LHC Run1, serve as a reference. New tagging approaches, such as the ECF tagger and the BEST
algorithm, utilize multivariate methods (i.e., boosted decision trees or deep neural networks)
on higher-level observables and result in enhanced performance. A novel set of tagging algo-
rithms, ImageTop and DeepAK8, are developed based on candidate level information, allowing
to explore more of the CMS potential. Lower-level information is processed using advanced
machine learning methods. This approach results in significant performance improvement
which in some cases leads to ⇠ O(10) gain in background rejection for the same signal effi-
ciency. Moreover, the BEST and DeepAK8 algorithms are developed to provide multi-class
tagging capabilities, which can potentially enable new measurements and search approaches.
Finally, dedicated versions of the algorithms which are only loosely correlated with the jet mass
are developed.

The performance of these new techniques has been directly compared in simulation in a jet
transverse momentum range from 200 to 2000 GeV. The techniques have also been validated in
collision data events, with scale factors extracted including systematic uncertainties.

Performance measured in data!



Many other classification tasks at LHC are enhanced with deep learning:

• quark/gluon tagging (Komiske, Metodiev & Schwartz ’16, et seq)

• b and c tagging (DeepCSV) 

• boosted W/Z tagging (Oliveira et al ’15, et seq)

• strange tagging (Nakai, Thomas & DS to appear)

• u vs d tagging using jet charge (Fraser & Schwartz ’18)

• boosted W+/Z/W- tagging using jet charge (Chen, Chiang, Cottin & DS 1908.08256)

• ….

Beyond top tagging



Beyond classification — decorrelation

Raw tagger performance not the only consideration.

For robust background estimation, generally need to ensure 
tagger does not sculpt the background mass distribution.

This would greatly 
underestimate the 
background in the SR

Two approaches with deep learning: 
• adversarial decorrelation (Louppe et al 1611.01046, Shimmin et al 1703.03507)

• DisCo decorrelation (Kasieczka & DS 2001.05310)

See talks by Michael Kagan and DS



Beyond classification — decorrelation

Raw tagger performance not the only consideration.

For robust background estimation, generally need to ensure 
tagger does not sculpt the background mass distribution.

This would greatly 
underestimate the 
background in the SR

Could 
have real-world 

applications, e.g. in 
designing fairer 

AIs?

Two approaches with deep learning: 
• adversarial decorrelation (Louppe et al 1611.01046, Shimmin et al 1703.03507)

• DisCo decorrelation (Kasieczka & DS 2001.05310)

See talks by Michael Kagan and DS



Matthew	Schwartz

Pileup Images

Eric M. Metodiev (MIT) PUMML July 19, 2017 12 / 23

Pileup	removal	as	regression	problem

Can	measure
1. Leading	vertex	charged	particles
2. Pileup	charged	particles
3. Total	neutral	particles

Leading	vertex	
neutral	particles?

Beyond classification — pileup regression

slide credit: Matthew Schwartz

PileUp Mitigation with Machine Learning (PUMML)  
(Komiske, Metodiev, Nachman & Schwartz 1707.08600)



Beyond classification — GermANs for everything

Can use GANs for event generation, fast detector simulation, unfolding, … 

See Anja Butter’s talk

Introduction Top-Pair Production Outlook

Energy Distributions
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10

WGAN-GP (2D Data)

Trained only on 50 GeV 

• (No energy-conditioning) 

• Very good agreement with G4! 

Background
GAN Inversion

FCGAN Inversion

The model learns to map the entire detector dataset to the parton
dataset
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Way beyond classification: anomaly detection
from Nachman & DS 2001.04990

signal model independence
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See talks by Tao Liu, Ben Nachman and DS
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Many interesting new ideas for model-independent searches being proposed



Summary/Outlook

Deep learning is revolutionizing nearly every aspect of high-energy physics.

• Tagging

• Pileup

• Event generation

• Detector simulation

• Triggering

• Searches for NP

• ….

Exciting times are ahead!



Thanks for your attention!



Supplementary material
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Chain rule for gradient of network involves multiple factors of 
the derivative multiplied together

(0.25)4 = 0.0039

Deep networks with Sigmoid activations have exponentially 
hard time training early layers
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Using the Rectified Linear Unit (ReLU) solves this problem. 
ReLU(x) = {0 if x <=0, x if x >0}

Still has nonlinearity which allows network to 
learn complicated patterns

Nodes can die (derivative always 0 so cannot update)
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Leaky Rectified Linear Unit (LeakyReLU) solves this problem. 

LeakyReLU(x) = {alpha*x if x <=0, x if x >0}

I have never had to use this in practice



Convolutional neural network (CNN)

Dealing with multiple channels is straightforward — just enlarge filter 
to include channel dimension (3d filter) and perform element-wise 
multiplication along channel dimension as well.



Convolutional neural network (CNN)

Dealing with multiple channels is straightforward — just enlarge filter 
to include channel dimension (3d filter) and perform element-wise 
multiplication along channel dimension as well.



“Max pooling”

Reduces image size, reducing parameters and mitigating overfitting 

Allows NN to find spatially larger, often higher-level features

Convolutional neural network (CNN)



Recurrent Neural Networks (RNNs)

Popular architecture for natural language processing (sentence 
completion, autocorrect, translation, speech recognition…)

Starting point: sequence of numbers x1, x2, x3, …

Suppose we want to predict the next number in the sequence?

Idea of RNN: 

• feed data sequentially to NN

• after each time step update hidden state. Hidden state encodes 
“memory” of sequence. 

• Use hidden state to make predictions.



Basic RNN architecture

Recurrent Neural Networks (RNNs)

hidden state after time step t

predictions, e.g. 



Different modes/uses of RNNs

Recurrent Neural Networks (RNNs)

sequence classification, regression



Different modes/uses of RNNs

Recurrent Neural Networks (RNNs)

real-time prediction



Different modes/uses of RNNs

Recurrent Neural Networks (RNNs)

sequence-to-sequence 



Simple RNNs applied to long sequences have a very serious exploding/
vanishing gradient problem. 

Prevents them from “remembering” relevant information from earlier in 
the sequence.

Recurrent Neural Networks (RNNs)

“Long-short term memory” and “Gated recurrent units” are two methods 
commonly used to solve the gradient problem and improve performance.



Normalizing flows

Recently a lot of excitement and progress in the problem of density 
estimation with neural networks.

Idea: map original distribution to normal distribution through series of 
invertible transformations.

Rezende & Mohamed 1505.05770

Examples: RealNVP, NICE, Glow, …



Autoregressive flows

Special type of normalizing flows. Learn probability density of each 
coordinate conditioned on previous coordinates. 

Transformation upper triangular — automatically invertible.  Allows for 
more expressive transformations.

Examples: MADE, MAF, IAF, NAF, PixelRNN, Wavenet, …



Top Tagging with CNNs
Macaluso & DS 1803.00107

Building on previous “DeepTop” tagger of Kasieczka et al 1701.08784

QCDCMS

Jet sample

13 TeV

pT 2 (800, 900) GeV, |⌘| < 1

Pythia 8 and Delphes

particle-flow

match: �R(t, j) < 0.6

merge: �R(t, q) < 0.6

1.2M + 1.2M

Image
37⇥ 37

�⌘ = �� = 3.2

Colors (pneutralT , ptrackT , Ntrack, Nmuon)

Table 1: The two jet image samples used in this work.

1 Introduction

2

Individual images very sparse

Tops



Building on previous “DeepTop” tagger of Kasieczka et al 1701.08784

TopsCMS

Jet sample

13 TeV

pT 2 (800, 900) GeV, |⌘| < 1

Pythia 8 and Delphes

particle-flow

match: �R(t, j) < 0.6

merge: �R(t, q) < 0.6

1.2M + 1.2M

Image
37⇥ 37

�⌘ = �� = 3.2

Colors (pneutralT , ptrackT , Ntrack, Nmuon)

Table 1: The two jet image samples used in this work.

1 Introduction

2

Average images clearly different

QCD

Top Tagging with CNNs
Macaluso & DS 1803.00107



Figure 1: Architecture of our CNN top tagger.

4 Image preprocessing

In the original DeepTop paper [30], the image preprocessing steps were found to actually

decrease the performance of the tagger. This is surprising since usually preprocessing

improves classifier performance.

The DeepTop preprocessing steps were as follows. First they pixelated the image

according to their detector resolution. Then they shifted such that the maximum pixel

intensity as defined by a 3x3 window was at the origin. Next, they rotated such that

the second maximum was in the 12 o’clock position, and they flipped to ensure that the

third maximum is in the right half plane. Finally, they normalized each image so that

the pixel intensities are between 0 and 1.

Our preprocessing steps di↵er from this in the following ways. First of all, we perform

all preprocessing before pixelating the image. This makes the most sense for the CMS

sample which separates the much-higher-resolution tracks from the calorimeter towers.

But it also appears to have some benefit even for the calo-only jets of the DeepTop

sample. Our first step is to calculate the pT -weighted centroid of the jet and the pT -

weighted principal axis. Then we shift so that the centroid is at the origin and we rotate

so that the major principal axis is vertical. In contrast to DeepTop, we flip along both

the L-R and the U-D axes so that the maximum intensity is in the upper right quadrant.

Finally, after doing all these transformations, we pixelate the image and then normalize

it to unit total intensity (i.e. divide by the total pT ).

To demonstrate the e↵ectiveness of our preprocessing steps, we show in fig. 2 the

average of 100k top and QCD jet images drawn from the high pT CMS jet sample, with

and without preprocessing. Although below we consider color images where the track

pT ’s and neutral pT ’s are considered separately, here we restrict ourselves to grayscale

images where they are added together. We see that even without preprocessing, the

average images are quite di↵erent, with the QCD jets being much more peaked than the

in this work.

12

DeepTop minimal Our final tagger

Training

SGD AdaDelta

⌘ = 0.003 ⌘ = 0.3 with annealing schedule

minibatch size=1000 minibatch size=128

MSE loss cross entropy loss

CNN architecture
8C4-8C4-MP2-8C4-8C4- 128C4-64C4-MP2-64C4-64C4-MP2-

64N-64N-64N 64N-256N-256N

Preprocessing
pixelate!center center!rotate!flip

! normalize ! normalize!pixelate

Sample size 150k+150k 1.2M+1.2M

Color p
calo
T = p

neutral
T + p

track
T (pneutralT , p

track
T , Ntrack, Nmuon)

Table 2: Summary of our final CNN tagger, together with the original DeepTop tagger.

5.2 Color

Inspired by [29], we also added color to our images from the CMS sample. (The DeepTop

sample was calo-only so we could not add color to them.) The four colors we used were

neutral and track pT per pixel, the raw number of tracks per pixel, and the number

of muons per pixel. The last color was not considered in [29], which focused on quark

vs. gluon tagging. Obviously, muons can be considered a crude proxy for b-tagging and

should play a role in any top tagger. (For more comments on b-tagging, see Section 7.)

Interestingly, we found that adding color to the images led to significant overfitting

for smaller training sample sizes. Evidently, while the color adds information to the

images, it also increases the noise, and with too few training examples, the network

learns to fit the noise. This problem went away when the training sample was increased

to 1.2M+1.2M, which is why we choose to place the color improvement last.

6 Final comparison

The full specifications of our final tagger are summarized in table 2 side-by-side with

those of the original DeepTop tagger.

Having gone through all the improvements (loss function, optimizer, CNN architec-

15
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DeepTop minimal

Our final tagger

HTTV2+τ32 BDT
HTTV2+τ32 cut-based
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Figure 8: ROC curves comparing our best top tagger (black), the original DeepTop tagger (red), the

cut-based top-tagger from [36] using variables from HTTV2 and ⌧32 (blue dashed), and a BDT built

out of those same variables (blue solid), for the CMS jet sample.

directly against their “MotherOfTaggers” BDT ROC curve (i.e. without recasting it).

For the CMS jet sample, we include two taggers that are representative of the state-of-

the-art in top-tagging with high-level features: a cut-based top-tagger using variables

from HTTV2 and N-subjettiness, and a BDT built out of those same variables. The BDT

is trained on the same 1.2M+1.2M jets as our final CNN tagger. The BDT improves

the performance of the high-level cut-based tagger by a moderate amount.

For the DeepTop jet sample, the baseline tagger was already comparable to the

BDT, and our improvements to the former raise it above the BDT by a factor of ⇠ 2.

Meanwhile, for the CMS jet sample, it is surprising to see that the baseline tagger is

outperformed by even a simple cut-based tagger at lower tag e�ciencies. This again

highlights the importance of optimizing a tagger for each fiducial jet selection. Thanks

to the factor of 3–10 improvement over the baseline, our final CNN top tagger still shows

substantial gains (a factor of ⇠ 3 in background rejection) compared to the BDT. One

20

Can achieve factor of ~3 improvement over cut-based approaches and BDTs!

95% accuracy

AUC=0.989

Top tagging efficiency
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QCD Tops
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NN output
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the-art in top-tagging with high-level features: a cut-based top-tagger using variables

from HTTV2 and N-subjettiness, and a BDT built out of those same variables. The BDT

is trained on the same 1.2M+1.2M jets as our final CNN tagger. The BDT improves

the performance of the high-level cut-based tagger by a moderate amount.

For the DeepTop jet sample, the baseline tagger was already comparable to the

BDT, and our improvements to the former raise it above the BDT by a factor of ⇠ 2.

Meanwhile, for the CMS jet sample, it is surprising to see that the baseline tagger is

outperformed by even a simple cut-based tagger at lower tag e�ciencies. This again
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Lists of four vectors
Pearkes et al 1704.02124

Trimming and constituent ordering 

�  Modest but definite gains especially for high purity WP 
2017-12-11 W. Fedorko LBNL jet workshop 12 

Do we do better than 
‘traditional’ methods? 

�  Likelihood ratio combines jet mass and �32 
2017-12-11 W. Fedorko LBNL jet workshop 13 

robust against different orderings

Outperforms 
high-level taggersNetwork structure 

�  Input width fixed: up to 120 constituents, 0-padded 

�  ‘ReLU’ activation function in hidden layers 

�  Logistic ‘sigmoid’ activation output 

�  Binary cross entropy loss function 

2017-12-11 W. Fedorko LBNL jet workshop 5 

5 hidden layers 
300,150,50,10,5 

nodes / hidden layer 

… … … 

input layer 

output 
node 

pT
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�1 

�1 

�N 

0 

ReLU 

0 

1 
sigmoid 

Interpret as 
probability 
of  class 
being ‘1’ 

Activation functions 



Sequences
Egan et al 1711.09059

Ordering revisited 
�  View anti-kT sequence as a binary tree 

�  Order using depth-first traversal prioritizing jets 
with ‘parents’ whose dij is smaller  

2017-12-11 W. Fedorko LBNL jet workshop 15 

Dense Network not really 
‘tuned’ to sequence processing  

�  Use a Recurrent Neural Network: 
�  Long Short-Term Memory Network 

2017-12-11 W. Fedorko LBNL jet workshop 14 

… 

xn 

… 

hn 

Time step 

credit: colah 

Figure 2: Left panel shows the ROC curve comparing the best performing DNN tagger to best performing
LSTM tagger under LHC 2016 pileup conditions. Inputs to the DNN were trimmed and sorted by subjet,
while LSTM inputs were untrimmed and sorted by the jet substructure-based method described in Section
5. Right panel shows the ROC curve for best performing LSTM network under di↵erent trimming and
constituent ordering conditions, under LHC 2016 pileup conditions.

in high pileup conditions when not using trimming. This suggests that large pileup a↵ects the jet clustering
order. The full ROC curves for some of these combinations are shown in Fig. 2 (right).

Architecture
Input conditions Background rejection at signal e�ciency of

Pileup Trim Sorting 80% 50% 20%

DNN LHC 2016 Yes Subjet 9.8 45 365

LSTM

LHC 2016
Yes Subjet 13.4 78 780
No Substructure 17.0 101 930
No Subjet 16.7 97 855

50
Yes Subjet 13.5 78 780
No Substructure 16.1 93 790
No Subjet 16.6 96 890

Table 1: Background rejection factors of the best performing LSTM network architecture given di↵erent
input types and sorting method. The performance of the DNN network from [23] is shown for comparison.

8 Conclusions

This work shows that using a simple and relatively narrow LSTM network with a fully-connected projection
improves greatly on a DNN top tagger using the exact same jet constituent inputs in list form. The best
performing LSTM reaches a background rejection of 100 at 50% signal e�ciency for jets with 600  pT 
2500 GeV, representing more than a factor of two improvement over the previously developed DNN. A
new constituent sequence ordering method has been developed. It has been demonstrated that information
encoded in the sequence ordering itself can impact the performance of the tagger as well as its response to
pileup.

References

[1] ATLAS Collaboration, Search for heavy particles decaying to pairs of highly-boosted top quarks using

4

Turn jet into a sequence, e.g. using 
jet clustering history. 

Feed sequence to RNN/LSTM, etc.



Trees

RecNN for Jets
Motivated by: 
• problems in image approach: sparsity of jet images (5% - 10% active), 

fixed image size, (information loss from pixelization) 
• natural tree-like structure of sequential jet clustering history 
• implementation in event-level

jet tree structureRecNN

Louppe et al 1702.00748, Cheng 1711.02633

Use jet clustering history to build binary tree

Train recursive neural net on jet tree to learn “embedding” for classifier.

Figure 4. Jet classification performance of the RNN classifier based on various network topologies
for the embedding (particles scenario). This plot shows that topology is significant, as supported
by the fact that results for kt, C/A and desc-pT topologies improve over results for anti-kt, asc-pT
and random binary trees. Best results are achieved for C/A and desc-pT topologies, depending on
the metric considered.

saw a significant loss in performance. While the trimming degraded classification perfor-

mance, we did not evaluate the robustness to pileup that motivates trimming and other

jet grooming procedures.

5.2 Infrared and Collinear Safety Studies

In proposing variables to characterize substructure, physicists have been equally concerned

with classification performance and the ability to ensure various theoretical properties

of those variables. In particular, initial work on jet algorithms focused on the Infrared-

Collinear (IRC) safe conditions:

• Infrared safety. The model is robust to augmenting e with additional particles

{vN+1, . . . ,vN+K} with small transverse momentum.

• Collinear safety. The model is robust to a collinear splitting of a particle, which is

represented by replacing a particle vj 2 e with two particles vj1 and vj2 , such that

vj = vj1 + vj2 and vj1 · vj2 = ||vj1 || ||vj2 ||� ✏.

The sequential recombination algorithms lead to an IRC-safe definition of jets, in the

sense that given the event e, the number of jets M and their 4-momenta v(tj) are IRC-safe.

An early motivation of this work is that basing the RNN topology on the sequential

recombination algorithms would provide an avenue to machine learning classifiers with some

– 11 –

RecNN for Jets
Motivated by: 
• problems in image approach: sparsity of jet images (5% - 10% active), 

fixed image size, (information loss from pixelization) 
• natural tree-like structure of sequential jet clustering history 
• implementation in event-level

jet tree structureRecNN



Graphs / Point clouds
Hu & Gouskos 1902.08570
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CONVOLUTION ON POINT CLOUDS

Convolution on point clouds: EdgeConv [arXiv:1801.07829] 
treating a point cloud as a graph:  

each point is a vertex 

for each point, a local patch is defined by getting the K-nearest neighbors to it 

distance defined based on the point “coordinates” 

designing a symmetric “convolution” function 

define “edge feature” for each center-neighbor pair: eij = hΘ(xi, xj) 

same hΘ for all neighbor points, and all center points, for symmetry 

aggregate the edge features in a symmetric way: xi’ = Σj eij

 13
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JET AS A PARTICLE CLOUD

 8

simulated top quark jet
anti-kT, R = 0.8, pT = 600 GeV
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POINT CLOUDS VS PARTICLE CLOUDS

 9

Point cloud 

points are intrinsically unordered 

primary information: 

3D coordinates in the xyz space

Particle cloud 

particles are intrinsically unordered 

primary information: 

2D coordinates in the η-φ space 

but also additional “features”: 

energy/momenta 

charge/particle type 

track quality/impact parameters/etc.

Much richer content than typical point clouds!
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PERFORMANCE: TOP TAGGING
Top tagging: 

only particle 4-momentum is available 

train/val/test 1.2M/400k/400k 

results of more algorithms available at link 

We managed to push the boundary a bit further 
>20% lower background at signal efficiency of 30% 

Is the gain real? Or is it just learning more details of the 
parton shower model? 

but personally I would not really consider the jet tagging 
problem as “solved” 

especially facing realistic experimental challenges like 
pileup, detector effects, and additional information (e.g., 
tracking, timing, etc.)
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Performance on top-tagging dataset

Algorithm Accuracy ROC AUC 1/εbkg @ εsig=30%
1D P-CNN 0.930 0.9804 780

2D CNN [ResNeXt50] 0.936 0.9838 1086
DGCNN 0.937 0.9842 1160

PFN-r.r. [arXiv:1810.05165] 0.932 0.9819 ± 0.0001 888±17

better


