学術創成 「タウ・レプトン物理の新展開」 5年間のまとめ

TAU LFV

$\tau \text{ LFV}$

 New Physics への架け橋

 τ=最も重いレプトン 感度が高い
 崩壊モードが豊富

→単に新しい物理の存在だけではなく、モデルについても言及

	SUSY+GUT	Higgs	Little Higgs	non-universal	
	(SUSY+Seesaw)	mediated		Z' boson	
$\left(\frac{\tau \to \mu \mu \mu}{\tau \to \mu \gamma}\right)$	~2×10 ⁻³	0.06~0.1	0.4~2.3	~16	
$\left(\frac{\tau \to \mu e e}{\tau \to \mu \gamma}\right)$	~1 × 10 ⁻²	~1 × 10 ⁻²	0.3~1.6	~16	
Br(τ→μγ) @Max	<10-7	<10 ⁻¹⁰	<10 ⁻¹⁰	<10 ⁻⁹	

(JHEP 0705, 013(2007), PLB54 252 (2002))

他にも、Higgs mediate with large tan β で(PRD74,035010(2006)) Br($\tau \rightarrow \mu f_0$):Br($\tau \rightarrow \mu \mu \mu$):Br ($\tau \rightarrow \mu \eta$) = 1.3 : 0.54 :1

2005年から2010年へ

to 2010

CLEOの100倍感度向上

New Physics Parameters

CPV IN TAU DECAYS

τ崩壊におけるCPV

- これも新しい物理探索の一環
 - 荷電ヒッグス粒子によって引き起こされるCPVを想定
 - 干渉によってCPVを評価
 - τ→Ksπν, τ→Kππν の2パターン

i) τ→Ksπν

結果(

r

崩壊におけるCPV)

τ→ΚππνとCPV

$$J^{\mu} \equiv \langle K^{-}(p_{1})\pi^{-}(p_{2})\pi^{+}(p_{3}) | \bar{s}\gamma^{\mu}(1-\gamma^{5})u | 0 \rangle$$

$$= [F_{1}(s_{1}, s_{2}, Q^{2})(p_{1}-p_{3})\nu + F_{2}(s_{1}, s_{2}, Q^{2})(p_{2}-p_{3})\nu]T^{\mu\nu}$$

$$+ iF_{3}(s_{1}, s_{2}, Q^{2})\epsilon^{\mu\nu\rho\sigma}p_{1\nu}p_{2\rho}p_{3\sigma} + F_{4}(s_{1}, s_{2}, Q^{2})Q^{\mu}$$

$$= \frac{C_{1}^{2}(1+1)\sqrt{q}}{(\frac{1}{2}Z_{2})\epsilon^{\mu\nu\rho\sigma}} \sum_{j=1}^{2} \frac{C_{1}^{2}(1+1)\sqrt{q}}{(\frac{1}{2}Z_{2})} + \frac{C_{1}^{2}(1+1)\sqrt{q}}{(\frac{1}{2}Z_{2})} \sum_{j=1}^{2} \frac{C_{1}^{2}(1+1)\sqrt{q}}{(\frac{1}{2}Z_{2})} + \frac{C_{1}^{2}(1+1)\sqrt{q}}{(\frac{1}{2}Z_{1})^{6}} \sum_{j=1}^{2} \frac{C_{1}^{2}(1+1)\sqrt{q}}{(\frac{1}{2}Z_{2})} \sum_{j=1}^{2} \frac{C_{1}^{2}(1+1)\sqrt{q}}{(\frac{1}{2}Z_{1})^{6}} \sum_{j=1}^{2} \frac{C_{1}^{2}(1+1)\sqrt{q}}{(\frac{1}{2}Z_{2})} \sum_{j=1}^{2} \frac{C_{1}(1+1)\sqrt{q}}{(\frac{1}{2}Z_{2})} \sum_{j=1}^{2} \frac$$

途中経過

2ND CLASS CURRENT

2nd class current search

- ・標準模型の精密検証
- 新物理ではないのにもかかわらず未発見
- Weak current: $\sqrt[4]{d}_{d}$ $PG(-1)^{J}$ で2種類に分類される

1st class current $PG(-1)^{J} = +1$ $J^{PG} = 0^{--}(\pi), 1^{++}(\rho), 1^{+-}(a_{1}), \cdots$ 2nd class current $PG(-1)^{J} = -1$ $J^{PG} = 0^{+-}(a_{0}), 1^{++}(b_{1}), \cdots$ $\tau \rightarrow \pi \eta \nu$ $\tau \rightarrow \pi \eta' \nu$ Suppressed by isospin symmetry

が2nd class Current に よって引き 起こされる

τ→ηπνのη分布

650fb⁻¹のデータを利用。ηは π⁺π⁻π⁰から再構成 (γγはBGが多いため)

もう1つの2nd class current($\tau \rightarrow \pi \omega \nu$)

MEASUREMENT OF BRANCHING FRACTIONS FOR TAU HADRONIC DECAYS

測定された分岐比

Mode	Branching fraction \mathcal{B} (×10 ⁻⁴)						
	This work	Previous ex	κp.	Ref.			
$\tau^- \to K^- \eta \nu_{\tau}$	$1.58 \pm 0.05 \pm 0.09$	$2.6 \pm 0.5 \pm$	0.5	CLEO [7]			
$\tau^- \rightarrow \pi^- \pi^0 \eta v_{\tau}$	$13.5\pm0.3\pm0.7$	$2.9 \pm 1.3 \pm 17 \pm 2 \pm 2$ $18 \pm 4 \pm 2$: 0.7	ALEPH [9] CLEO [6] ALEPH [9]		490fb ⁻¹	
$\tau^- \rightarrow K^- \pi^0 \eta v_{\tau}$	$0.46 \pm 0.11 \pm 0.04$	1.77 ± 0.56	5 ± 0.71	CLEO [8]			
$\tau^- \to \pi^- K^0_S \eta \nu_\tau \tau^- \to K^{*-} \eta \nu_\tau$	$\begin{array}{c} 0.44 \pm 0.07 \pm 0.02 \\ 1.34 \pm 0.12 \pm 0.09 \end{array}$	1.10 ± 0.35 2.90 ± 0.80	5 ± 0.11 0 ± 0.42	CLEO [8] CLEO [8]			
$\tau^- \rightarrow K^- K^0_s \eta v_\tau$	< 4.5 × 10 ⁻	6					
$\tau^- \rightarrow \pi^- K_S^0 \pi^0 \eta v_\tau$	$< 2.5 \times 10^{-10}$	5					
$\tau^- \rightarrow K^- \eta \eta \nu_{\tau}$	$< 3.0 \times 10^{-1}$	6					
$\tau^- \rightarrow \pi^- \eta \eta \nu_{\tau}$	< 7.4 × 10 ⁻	6					
Br(τ→K ^{*0} Kν)=(1.78±0.01±0.10)×10 ⁻³ Br(τ→K ^{*0} Kπ ⁰ ν)=(2.39±0.46±0.26)×10 ⁻⁵			previous result(ARGUS) Br($\tau \rightarrow K^{*0}K_V$) =(2.0± 0.5 ± 0.4) × 10 ⁻³		<u>S)</u>)-3	550fb ⁻¹	
Br(τ→hπ ⁰ ν)=(25.67±0.01±0.39)% (Br(τ→ππ ⁰ ν)=(25.24±0.01±0.39)%)			previous result(CLEO) Br(τ→h π^0 ν) =(25.87± 0.12±0.42)%)%	72.2fb ⁻¹	
Br $(\tau \rightarrow Ks^0Ks^0\pi\nu) = (2.34 \pm 0.04 \pm 0.18)x10^{-4}$ (PDG $(2.4 \pm 0.5)x10^{-4}$)							
Br $(\tau \rightarrow Ks^0 Ks^0 \pi \pi^0 \nu) = (1.9 \pm 0.4 \pm 0.2) \times 10^{-5}$ (PDG <2.0×10 ⁻⁴)						68Utp-1	

評価された分布($\tau \rightarrow \pi \pi^0 v$)

最終的にg-2へのππの寄与

 $a_{\mu}^{\pi\pi}[2m_{\pi}, 1.8 \text{ GeV}/c^2] = (523.5 \pm 1.5(\text{exp.}) \pm 2.6(\text{Br.}) \pm 2.5(\text{isospin})) \times 10^{-10},$

評価された分布(τ→ππ⁰ν)

黄色の分布はee→ππη過程を CVCを利用してτ→ππ⁰vに焼きなおした 分布。CVCがよく機能していることが 確認できる。

 4) \$\tau^-\to\eta\pi^-\pi^0\nu_\tau\$ and \$\sigma(e^+e^-\to \eta\pi^+\pi^-)\$ at low energies. Pablo Roig, (Orsay, LPT). LPT-ORSAY-10-70, Oct 2010. 4pp. To appear in the proceedings of 15th International QCD Conference: QCD 10 (25th anniversary), Published in Nucl.Phys.Proc.Suppl.207-208:145-147,2010. e-Print: arXiv:1010.0224 [hep-ph]

6) Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data. By Working Group on Radiative Corrections and Monte Carlo Generators for Low Energies (S. Actis *et al.*). BIHEP-T HEPTOOLS-09-018, IEKP-KA-2009-33, LNF-09-14-P, LPSC-09-157, LPT-ORSAY-09-95, LTH-851, MZ-TH-09-38, Published in Eur.Phys.J.C66:585-686,2010. e-Print: arXiv:0912.0749 [hep-ph]

評価された分布(τ→KKπν)

/ $\rho \rightarrow \omega \pi + \phi \pi / \omega (\text{or } \phi) \rightarrow KK$ # of events / 20 MeV/c² 10² Axial : $\tau \rightarrow a_1 \nu / a_1 \rightarrow K * K / K^* \rightarrow \pi K$ さらに $/ a_1 \rightarrow \rho \pi / \rho \rightarrow KK$ τ→ΚΟΚΟπν 10 に fit 結果 を を考慮して、3つの質量分布に対し Fitを行う。 1 この結果から、Γ_ν/Γ_Δ=1.13+-0.07 1.25 1.75 1.5 $M_{KsKs\pi}$ (GeV/c²)

まとめ

- 世界最高統計タウデータ(500~1000fb⁻¹)を利用して6
 1モード(LFV: 42, CPV:2, SCC:3, Br:14)を解析
- LFV
 - 新たに6モードの探索+CLEOの100倍の感度達成

- 統計の伸びだけではなくBGの理解のたまもの

• CPV

- CLEOの10倍の感度達成

• SCC

- τ→ηνで兆候を観測・その他でCLEOの10倍の感度達成

- SM hadronic decay
 - 14のモードを測定。精度を4~8倍向上

 $-a_{\mu}^{\pi\pi}$ 評価、 Γ_{V}/Γ_{A} 評価

where ψ denotes the angle between the direction of the CM frame and the direction of the τ as seen from the hadronic rest frame and can be calculated as

$$\cos\psi = \frac{x(m_{\tau}^2 + Q^2) - 2Q^2}{(m_{\tau}^2 - Q^2)\sqrt{x^2 - 4Q^2/s}}.$$
 (5)

(see [3]). The angle β is defined by $\cos \beta = \vec{n}_L \cdot \hat{q}_1$ where $\hat{q}_1 = \vec{q}_1/|\vec{q}_1|$ is the direction of the K_S^0 and \vec{n}_L is the direction of the e^+e^- center of mass (CM) system, both observed in the hadronic rest frame. The azimuthal angle α is not observable in this experiment and has to be averaged out. The variable θ is the angle between the direction opposite to the direction of the CM system and the direction of the hadronic system in the τ rest frame. In this experiment, the direction of the τ is not known but θ call be calculated from the hadronic energy E_h measured in the CM system:

$$\cos\theta = \frac{2xm_{\tau}^2 - m_{\tau}^2 - Q^2}{(m_{\tau}^2 - Q^2)\sqrt{1 - 4m_{\tau}^2/s}}, \quad x = 2\frac{E_h}{\sqrt{s}}, \quad (2)$$

where $s = 4E_{\text{beam}}^2$ denotes the squared CM energy.

発見と探索感度向上

τ→μγ で相関を考える

generator level での話

 $A_L \neq 0, A_R = 0 \qquad \qquad A_L = 0, A_R \neq 0$

Left handed なタイプと $\tau^- \rightarrow \mu^- vv/\tau^+ \rightarrow \pi^+ v$ はよくセパレイト可能に見える 今実際に測定されたデータではどうか?

 $\tau^{-} \rightarrow \mu^{-} \nu \nu / \tau^{+} \rightarrow \pi^{+} \nu \text{ MC}$

Cutしてみる

今、信号側のタウは再構成されているので、反対側のタウもCM系では再構成可能 但し、BG事象では明後日の方向をむいている。

