EDM理論 ## Nodoka Yamanaka (Kennesaw State University) NY, PoS SPIN 2018, 094 (2019) [arXiv:1902.00527 [hep-ph]]. ## Have you ever seen antiparticles? Antiparticle: particle with opposite electric charge, and with almost the same properties as particles particle (atom) antiparticle (anti-atom) Anti-matter (matter made of anti-particles) annihilates with matter and emit a huge amount of energy (gamma rays) Anti-matter ?? (photo from *Angels & Demons*, Dan Brown) #### Why did antimatter disappear (baryon number excess)? Asymmetric decays generates excess of matters in the early Universe $T > m_x (X, matter and anti-matter in equilibrium)$ 📄 : Matter (q,l) : Anti-matter (q̄,l̄) 💢 : Heavy particles $T < m_x$ (X decouple from equilibrium) Decay of heavy particles $T < m_{matter} (now)$ Pair annihilation of matter-anti-matter Matter/photon ratio is a direct signature of baryon number asymmetry #### Sakharov's three conditions To generate the baryon number asymmetry of our Universe, three conditions must be satisfied: Baryon number violating interaction Decay of heavy particles carrying baryon number (GUT, leptoquark), sphaleron process (topological violation of B, OK with SM) Departure from equilibrium Decays or pair annihilations of heavy particles carrying B, bubble nucleation at phase transition (due to the decrease of temperature of the expanding Universe) Violation of charge conjugation (C) and charge conjugation-parity (CP) (See next slide) #### C, CP violations and baryon number asymmetry #### P, C and CP transformation of initial & final states: #### Baryon number asymmetry: $$\epsilon \propto \Gamma(X \to f_L f'_L) + \Gamma(X \to f_R f'_R) - \Gamma(\bar{X} \to \bar{f}_L \bar{f}'_L) - \Gamma(\bar{X} \to \bar{f}_R \bar{f}'_R)$$ Similar relations hold for decays of other particles, other interactions C & CP violations are both needed for baryon number asymmetric decays # CP violation of Standard model is not sufficient to explain matter/antimatter asymmetry ... ratio photon: matter Prediction of Standard model: 10²⁰: 1 Real observed data: $10^{10}:1$ CP violation of standard model is in great deficit! We need new source(s) of large CP violation beyond the standard model! #### Electric dipole moment (EDM) #### **Electric dipole moment:** Permanent polarization of internal charge of a particle. $$ec{d}_{\psi} = \sum_{i} \langle \psi | Q_{i} e \vec{r_{i}} | \psi \rangle$$ \Rightarrow This is what will be evaluated! - lacktriangle Direction: $\vec{d} \propto \vec{\sigma}$ (Spin is the only vector quantity in spin ½ particle) - lacksquare Interaction: $H_{\mbox{EDM}} = -d \, \langle ec{\sigma} angle \cdot ec{E} \, ec{e}$ - Transformation properties: - Under parity tr.: $\begin{cases} \vec{E} & \xrightarrow{P} -\vec{E} \\ \vec{\sigma} & \xrightarrow{P} \vec{\sigma} \end{cases} \rightarrow \mathcal{H}_{EDM} \text{ is P-odd}$ #### EDM from physics beyond Standard model EDM operator in relativistic field theory: dimension five-5 operator $$- rac{i}{2}d_{\psi}ar{\psi}\sigma_{\mu u}F^{\mu u}\gamma_{5}\psi$$ Nonrela. lim. EDM is generated by CP violating interactions. Can be calculated using Feynman diagrams: EDM receives very small contribution from SM, whereas BSM new physics may contribute with low loop level: EDM is a very good probe of BSM new physics! #### EDM of composite systems The EDM is often measured in composite systems (neutron, atoms, molecules, nuclei) The EDM of composite systems is not only generated by the EDM of the components, but also by CP violating many-body interactions. **EDM** of constituents CP-odd many-body interaction Example of QCD level many-body interactions inducing neutron EDM: P, CP-odd 4-quark interaction Effect of CPV many-body interaction may be enhanced/suppressed! #### Elementary level CP violation and its origin All these processes scale as $1/M_{NP}^2$ Quark EDM, chromo-EDM: CP-odd 4-quark interaction: Tree level: - * Left-right sym. - * Scalar exchange - * Leptoquarks Weinberg operator: 2-loop diagram: - * 2-Higgs doublet model - * Vectorlike quark model Probe BSM sectors without LO interaction with light quarks #### EDM from elementary level CP violation #### What is better in EDM experiments ⇒ Elementary level CPV is unknown and small: can be factorized Unknown CP violating couplings beyond the standard model $d_{A} = (a_{\pi}^{(0)} \bar{G}_{\pi}^{(0)} + a_{\pi}^{(1)} \bar{G}_{\pi}^{(1)}) e cm + K_{e} d_{e} + ...$ Depends on the structure of the system! ⇒ Linear coefficients depends only on the structure of the system, not in NP ⇒ We want to evaluate coefficients and find interesting systems! ⇒ We want to find systems with large enhancement factors (or understand and avoid suppression) #### Atomic EDM and Schiff's screening In atoms, EDM of nonrelativistic constituents suffers Schiff's screening Atomic EDM: screening via rearrangement Typically, looses sensitivity by $\alpha_{QED}^2 \sim 10^{-4}$ #### 3 leading P, CP-odd processes in atoms: - Relativistic effect of constituents (electrons in heavy atoms) - CP-odd electron-nucleon interaction - Schiff moment (residual nuclear moment due to nuclear finite size) L. I. Schiff, Phys. Rev. 132, 2194 (1963). Oscillating EDM of constituents (interaction with axion dark matter?) V. Flambaum et al., Phys. Rev. D 100, 111301 (2019). #### Electron EDM in atoms/molecules: relativistic enhancement ## Electron EDM is enhanced in heavy paramagnetic atoms/molecules due to the relativistic effect P. G. H. Sandars, Phys. Lett. 14, 194 (1965); Phys. Lett. 22, 290 (1966). $$d_A = \sum_n \frac{\langle \Psi_0 | -e \sum_i^Z z_i | \Psi_n \rangle \langle \Psi_n | d_e \sum_j^Z (1-\beta_j) \pmb{\sigma}_j \cdot \mathbf{E}_j | \Psi_0 \rangle}{E_n - E_0} = K_e d_e$$ Relativistic effect : Not canceled by Schiff theorem #### **Mechanism of enhancement:** $(1+\gamma_0)$ component (nonrelativistic) is removed due to Schiff's screening $(1-\gamma_0)$ component is relativistic \Rightarrow Enhanced by $(Z\alpha)^2$! **Electron EDM induces internal electric field ~ Coulomb force** \Rightarrow Additionally enhanced by Z α ! \Rightarrow Enhancement by $(Z\alpha)^3!!$ #### **Some examples:** enhancement factor Experimental data $K_e = -585$ Porsev et al., PRL 108, 173001 (2012). $K_e = -800$ Experimental data $K_e < 1.6 \times 10^{-27} \text{ e cm}$ Regan et al., PRL 88, 071805 (2002) K_e = -800 Shitara et al., arXiv:2011.02529 [hep-ph] $\delta d_e \sim O(10^{-29}) e cm$ Sakemi et al., on-going \Rightarrow O(100) enhancement of electron EDM! #### Enhancement in octupole systems: molecules, nuclei Octupole deformed systems may enhance the CP violation by close opposite parity levels (parity doubling) Each orientation corresponds to localized state in double well potential $$\left| \begin{array}{c} \\ \\ \\ \\ \end{array} \right\rangle \pm \left| \begin{array}{c} \\ \\ \\ \end{array} \right\rangle = \left\{ \begin{array}{c} |S\rangle \\ |P\rangle \end{array} \right.$$ Physical states are mixing between localized states - ⇒ Nearly degenerate symmetric (S) and antisymmetric (P) states! - ⇒ Close energy levels between opposite parity lead to enhancement! Current electron EDM world record by ThO molecule : $d_e < 1.1 \times 10^{-29} e$ cm V. Andreev et al. [ACME Collaboration], Nature 562, 355 (2018). (parity doubling also occurs in heavy nuclear systems, see later) #### Enhancement/suppression mechanism: scalar and spin Spin (tensor, axial charges): suppression In many-fermion system, spin tends to form singlet (pairing): no enhancement Quark EDM is a superposition of flipping after gluon emissions/absorptions ⇒ Quark EDM is suppressed Scalar density: enhancement Scalar density grows with particle number Scalar density of particles and antiparticles has the same sign - ⇒ Becomes large with long worldline - ⇒ Enhancement by relativistic effect NY, T. M. Doi, S. Imai, H. Suganuma, Phys. Rev. D **88**, 074036 (2013). NY, S. Imai, T. M. Doi, H. Suganuma, Phys. Rev. D **89**, 074017 (2014). #### Enhancement/suppression mechanism: scalar and spin Spin (tensor, axial charges): suppression Renormalization group evolution of quark EDM, quark/gluon chromo-EDM Nucleon matrix element of quark EDM, quark/gluon chromo-EDM Nuclear spin matrix elements: configuration mixing Scalar density: enhancement Renormalization group evolution of quark scalar density, 4-quark operators Light quark effect: pion pole, pion loop Nuclear density grows with A #### CP-odd electron-nucleon interaction: the most interesting! P, CP-odd e-N interaction induces atomic EDM, it is a pure atomic effect In view of the above enhancement/suppression mechanisms, the CP-odd e-N interaction is the most interesting, because... - Many new physics contribute at the tree level - For scalar-pseudoscalar type $C_{SP}\bar{N}N\,\bar{e}i\gamma_5 e$ Similar enhancement as the electron EDM in paramagnetic systems Hadronic part has scalar density enhancement $\langle N|\bar{q}q|N\rangle$ \Rightarrow In many cases, more sensitive than electron EDM! - For pseudoscalar-scalar $C_{PS}\bar{N}i\gamma_5N$ $\bar{e}e$ and tensor $C_T\bar{N}\sigma_{\mu\nu}N$ $\bar{e}i\sigma^{\mu\nu}\gamma_5e$ types Suppression due to spin, but EDM experiments of diamagnetic atom are very precise! (c.f. d_{Hg} < 7.4 x 10⁻³⁰ e cm, world record) Graner et al., Phys. Rev. Lett. 116, 161601 (2016). Sensitivity to specific new physics through C_T , such as leptoquark #### Nucleon level CP violation from strong interacting sector Much chiral EFT / lattice QCD works in the past. Current understanding is like Unfortunately, not all hadron matrix elements are available from lattice QCD Use chiral EFT to relate unknown ones with known ones #### Nuclear EDM / Schiff moment from nucleon level CP violation #### Two leading contributions to nuclear EDM/Schiff moment: 1) Nucleon's intrinsic EDM: Contribution from the nucleon EDM (spin) Strong pairing force: only unpaired nucleon(s) contribute Nucleons are nonrelativisitic in nuclei ⇒ Nucleon EDM is not enhanced in nuclei #### 2) Polarization of the nucleus: Polarize the whole system by the parity and CP mixing due to CP-odd nuclear force May be enhanced by the many-body effect? #### P, CP-odd nuclear force #### P, CP-odd nuclear force: pion exchange is dominant P, CP-odd Hamiltonian (3-types): $$\mathcal{H}_{PT} = -\frac{1}{8\pi m_N} \Big[\underbrace{\left(\bar{G}_{\pi}^{(0)} \tau_a \cdot \tau_b + \underline{\bar{G}}_{\pi}^{(2)} (\tau_a \cdot \tau_b - 3\tau_a^z \tau_b^z)\right)}_{\text{Isoscalar}} (\tau_a \cdot \tau_b - 3\tau_a^z \tau_b^z) \Big] (\sigma_a - \sigma_b) + \underbrace{\bar{G}_{\pi}^{(1)}}_{\text{Isovector}} (\tau_b^a \sigma_a - \tau_b^z \sigma_b) \Big] \cdot \frac{\nabla_{ab} e^{m_\pi r_{ab}}}{r_{ab}} + \underbrace{\bar{G}_{\pi}^{(2)}}_{\text{Isovector}} (\tau_b^a \sigma_b) + \underbrace{\bar{G}_{\pi}^{(1)}}_{\text{Isovector}} \sigma$$ - 4 important properties: - Coherence in nuclear scalar density: enhanced in nucleon number - One-pion exchange: suppress long distance contribution - Spin dependent interaction: closed shell has no EDM - Derivative interaction: contribution from the surface - What is expected: - Polarization effect grows in A for small nuclei? - May have additional enhancements with cluster structure, deformation, ... #### EDM of light nuclei and counting rule #### EDM of light nuclei can be measured using storage rings - ⇒ No Schiff's screening - ⇒ Very high sensitivity to new physics expected - Isovector coupling obeys a counting rule $$d_A^{(pol)} \sim d(^{2/3}H) + n \times 0.005 G_{\pi}^{(1)} e fm$$ EDM of cluster with open shell a-N polarization (times # a-N combinations) ⇒ Explained by the <u>cluster structure</u> NY, T. Yamada, Y. Funaki, in preparation Isoscalar and isotensor appears from single valence nucleon and ³H cluster (vanish for α-N polarization) $d_{11B} = 0.02 G^{(1)}_{\pi} e fm$ #### EDM of heavy nuclei: simple shell model #### EDM of larger nuclei is larger? #### **Problems:** - pion is massive, nucleon cannot interact with the other side of the nucleus - CP-odd nuclear force is a derivative interaction, interact with the surface - Large nuclei have configuration mixings (destructive interference of angular momentum of valence nucleons) $$|\Psi\rangle = |\frac{1}{2} + |\frac{1}{2} + \frac{1}{2} + \dots$$ We should have some upper limit in the sensitivity $d_A \sim 0.07 G_{\pi}^{(1)} e fm$ #### Schiff moment of octuple deformed nuclei: enhancement #### Octupole deformation - ⇒ parity doubling due to axially asymmetric shape - ⇒ close opposite parity levels - ⇒ enhance nuclear Schiff moment Octupole deformation occurs in heavy nuclei (225Ra, 223Rn, 223Fr, etc) Comparison of Schiff moment with 199Hg: | | a ₀ (isoscalar) | a ₁ (isovector) | a ₂ (isotensor) | |-------------------|----------------------------|----------------------------|----------------------------| | ²²⁵ Ra | -1.5 e fm³ | 6.0 e fm³ | -4.0 e fm³ | | ¹⁹⁹ Hg | 0.08 e fm³ | 0.08 e fm³ | 0.14 e fm³ | J. Dobaczewski and J. Engel, Phys. Rev. Lett. 94, 232502 (2005) Octupole deformation enhances by O(100) times!! J. Dobaczewski et al., Phys. Rev. Lett. **121**, 232501 (2018). (Comparison ¹⁹⁹Hg result of Yanase et al., arXiv:2006.15142 [nucl-th] ## Results | EDM | isoscalar (a ₀) | isovector (a₁) | isotensor (a ₂) | |--|-----------------------------------|-----------------------------------|-----------------------------------| | 129Xe atom K. Yanase et al., arXiv:2006.15142 [nucl-th] A. Sakurai et al., PRA 100, 0320502 (2019) | -1.2x10 ⁻⁶ <i>e</i> fm | -1.3x10 ⁻⁶ <i>e</i> fm | -2.6x10 ⁻⁶ <i>e</i> fm | | 199 Hg atom K. Yanase et al., arXiv:2006.15142 [nucl-th] B. K. Sahoo et al., PRL 120, 203001 (2018) | -1.4x10 ⁻⁵ <i>e</i> fm | -1.3x10 ⁻⁵ <i>e</i> fm | -2.6x10 ⁻⁵ <i>e</i> fm | | 225Ra atom
Dobaczewski et al., PRL 94, 232502 (2005)
Y. Singh et al., PRA 92, 022502 (2015) | 0.00093 <i>e</i> fm | -0.0037 <i>e</i> fm | 0.0025 <i>e</i> fm | | Neutron Crewther et al. , PLB 88,123 (1979) Mereghetti et al., PLB 696, 97 (2011) | 0.01 <i>e</i> fm | _ | – 0.01 <i>e</i> fm | | Deuteron Liu et al., PRC 70 , 055501 (2004) NY et al., PRC 91 , 054005 (2015) | _ | 0.0145 <i>e</i> fm | _ | | ³ He nucleus
Bsaisou et al., JHEP 1503 (2015) 104
NY et al., PRC 91, 054005 (2015) | 0.015 <i>e</i> fm | 0.0108 <i>e</i> fm | 0.026 <i>e</i> fm | | ⁶ Li nucleus
NY et al., PRC 91 , 054005 (2015) | _ | 0.022 <i>e</i> fm | _ | | ⁷ Li nucleus
NY et al., PRC 100, 055501 (2019) | – 0.015 <i>e</i> fm | 0.016 <i>e</i> fm | – 0.026 <i>e</i> fm | | 9Be nucleus
NY et al., PRC 91 , 054005 (2015) | 0.01 <i>e</i> fm | 0.014 <i>e</i> fm | 0.01 <i>e</i> fm | | 11B nucleus
NY et al., PRC 100, 055501 (2019) | – 0.01 <i>e</i> fm | 0.016 <i>e</i> fm | – 0.02 <i>e</i> fm | | ¹³ C nucleus
NY et al., PRC 95,065503 (2017) | – 0.003 <i>e</i> fm | -0.0020 <i>e</i> fm | – 0.003 <i>e</i> fm | | 129Xe nucleus N. Yoshinaga et al., PRC 89, 045501 (2014) | 7.0x10 ⁻⁵ <i>e</i> fm | 7.4x10 ⁻⁵ <i>e</i> fm | 3.7x10 ⁻⁴ <i>e</i> fm | | Simple shell model O. P. Sushkov et al., Sov. JETP 60, 873 (1984) | O(0.01) <i>e</i> fm | 0.07 <i>e</i> fm | O(0.01) <i>e</i> fm | atoms • nuclei ## Results | EDM | isoscalar (a ₀) | isovector (a ₁) | isotensor (a₂) | |--|-----------------------------------|-----------------------------------|-----------------------------------| | 129 Xe atom K. Yanase et al., arXiv:2006.15142 [nucl-th] A. Sakurai et al., PRA 100, 0320502 (2019) | -1.2x10 ⁻⁶ <i>e</i> fm | -1.3x10 ⁻⁶ <i>e</i> fm | -2.6x10 ⁻⁶ <i>e</i> fm | | 199 Hg atom K. Yanase et al., arXiv:2006.15142 [nucl-th] B. K. Sahoo et al., PRL 120, 203001 (2018) | -1.4x10 ⁻⁵ <i>e</i> fm | -1.3x10 ⁻⁵ <i>e</i> fm | -2.6x10 ⁻⁵ <i>e</i> fm | | 225Ra atom
Dobaczewski et al., PRL 94, 232502 (2005)
Y. Singh et al., PRA 92, 022502 (2015) | 0.00093 <i>e</i> fm | -0.0037 <i>e</i> fm | 0.0025 <i>e</i> fm | | Neutron Crewther et al. , PLB 88,123 (1979) Mereghetti et al., PLB 696, 97 (2011) | 0.01 <i>e</i> fm | _ | – 0.01 <i>e</i> fm | | Deuteron
Liu et al., PRC 70 , 055501 (2004)
NY et al., PRC 91 , 054005 (2015) | _ | 0.0145 <i>e</i> fm | _ | | ³ He nucleus
Bsaisou et al., JHEP 1503 (2015) 104
NY et al., PRC 91, 054005 (2015) | 0.015 <i>e</i> fm | 0.0108 <i>e</i> fm | 0.026 <i>e</i> fm | | ⁶ Li nucleus
NY et al., PRC 91, 054005 (2015) | _ | 0.022 <i>e</i> fm | _ | | ⁷ Li nucleus
NY et al., PRC 100, 055501 (2019) | – 0.015 <i>e</i> fm | 0.016 <i>e</i> fm | - 0.026 <i>e</i> fm | | ⁹ Be nucleus
NY et al., PRC 91 , 054005 (2015) | 0.01 <i>e</i> fm | 0.014 <i>e</i> fm | 0.01 <i>e</i> fm | | ¹¹ B nucleus
NY et al., PRC 100, 055501 (2019) | – 0.01 <i>e</i> fm | 0.016 <i>e</i> fm | – 0.02 <i>e</i> fm | | ¹³ C nucleus
NY et al., PRC 95,065503 (2017) | – 0.003 <i>e</i> fm | -0.0020 <i>e</i> fm | – 0.003 <i>e</i> fm | | ¹²⁹ Xe nucleus N. Yoshinaga et al., PRC 89 , 045501 (2014) | 7.0x10 ⁻⁵ <i>e</i> fm | 7.4x10 ⁻⁵ <i>e</i> fm | 3.7x10 ⁻⁴ <i>e</i> fm | | Simple shell model O. P. Sushkov et al., Sov. JETP 60, 873 (1984) | O(0.01) <i>e</i> fm | 0.07 <i>e</i> fm | O(0.01) e fm | atoms nuclei #### SUSY CP problem In naive supersymmetric models with all possible soft SUSY breaking, the fermion EDM is generated at the one-loop level Neutron and atomic EDMs are very sensitive to SUSY CP phases ⇒ Very strong constraints on the CP phases of light sfermion ($\theta < 10^{-(2-3)}$ for m_{SUSY} ~ TeV) This lead phenomenologists to think of a more "natural" scenario where CP phases of sfermions are irrelevant, such as split-SUSY (very heavy sfermions) Arkani-Hamed et al., Nucl. Phys. B 709 (2005) 3 In such scenarios, the EDM appears at two-loop level Barr-Zee type diagram ⇒ Two-loop level CP violation is smaller ⇒ No need to tune SUSY CP phases #### Higgs doublet models Standard model Higgs boson does not have CP phase, but its extension may have it. Higgs boson has very small interaction with light fermions (Yukawa) The leading contribution involves heavy fermions. #### Two leading contributions: Fermion EDM (Barr-Zee type diagram) CP-odd electron-nucleon force (gluon inside nucleon) #### Be careful!! For top quark, Barr-Zee is dominant, but for bottom quark, CP-odd e-N interaction and Barr-Zee interfere destructively in paramagnetic atoms! Shitara et al., arXiv:2011.02529 [hep-ph] #### Leptoquark models Leptoquarks: boson with lepton and baryon numbers. Natural effective models which may be arise in Grand unification. (note that not all are constrained by proton decay) Recently attracting attention in the context of B meson decay. Atomic EDM is very sensitive to leptoquark models ⇒ CP-odd electron-nucleon interaction! ⇒ Very strong constraints on the CP phases of leptoquarks ($\theta < 10^{-3}$ for m_{LQ} ~ TeV) Natural mechanisms to explain small CP phases are required. Herczeg, Phys. Rev. D **68**, 116004 (2003), Fuyuto et al., Phys. Lett. B **788** (2019) 52, Yanase et al., Phys. Rev. D **99**, 075021 (2018). #### EDM from CKM matrix #### **Leading CP violation from Jarlskog invariant** $$J = Im[V_{ts}^* V_{td}^* V_{us}^* V_{ud}^*] = -Im[V_{cs}^* V_{cd}^* V_{us}^* V_{ud}^*]$$ = (3.06 ± 0.21)x10⁻⁵ (PDG value) C. Jarlskog, PRL 55, 1039 (1985). #### **Short distance process:** **EDM** in the Standard model starts from - * 3-loop diagram for quark ~ 10⁻³⁵e cm - * 4-loop diagram for electron ~ 10⁻⁴⁸e cm ⇒ Very small due to GIM mechanism with quark mass factors A. Czarnecki et al., PRL 78, 4339 (1997) M. Pospelov et al., PRD 89, 056006 (2014) #### Long distance (hadron level) process: Generated by two distinct hadron level $|\Delta S|=1$ interactions - * Electron EDM ~ 10-39e cm - * Neutron EDM ~ 10-32e cm - * Deuteron EDM ~ 10⁻³¹e cm ⇒ No strong GIM cancelation, much larger EDM C.-Y. Seng, PRC 91, 025502 (2015) NY and E. Hiyama, JHEP 1602 (2016) 067 Y. Yamaguchi and NY, to appear in PRL EDM from CKM is well below the experimental sensitivity #### What can we learn from EDM and model studies? Essentially, nothing was discovered so far in LHC, so all models are even. Nevertheless, EDM can constrain CP phases which cannot by LHC, so EDM experiments have a strong diplomatic power in suggesting the directions of future particle physics studies (e.g. split-SUSY). Now, what the EDM is suggesting us? (include my personal thought) - SUSY: split-SUSY was nice to avoid SUSY CP problem, but "natural" CP phases will be killed in future EDM experiments. - Leptoquark: very unlikely to be at TeV within natural CP phases. GUT scale is the most natural, but other tricky mechanisms to only remove CP phases at TeV? - Extending Higgs sector: the Higgs exists, but many aspects not ellucidated, such as Yukawa, CKM mixing/CP angles, etc. We also note that the CKM effect is also (indirectly) due to Higgs. This means, even not finding other CP phases than the CKM one is meaningful for the study of the Higgs sector. Probably, the precise study of Higgs sector is the most promising. #### **Summary** - Baryon number excess was created due to CP violation. - EDM is a good probe of CP violation beyond standard model. - A review of enhancement/suppression in EDM. - Schiff's screening in atoms damps the leading hadronic CPV. - Notable enhancement: relativistic electron in atoms/ molecules, octuple deformation of nuclei, and maybe scalar density. - Review of some CPV models and EDM constraints. - We have to note that experimentally measurable systems are not numerous: limited # of cases to be studied. #### **Future subjects:** - Hadronic CP violation to be quantified. - We are waiting for new experiments! #### <u>Advertisement</u> - For details of nuclear EDM calculation, see N. Yamanaka, Review of the electric dipole moment of light nuclei, International Journal of Modern Physics F 26, 1730002 (2017) - International Journal of Modern Physics E 26, 1730002 (2017) arXiv:1609.04759 [nucl-th]. - For values and error bars of hadron level CP violation, see N. Yamanaka, B. K. Sahoo, N. Yoshinaga, T. Sato, K. Asahi and B. P. Das, Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms, European Physical Journal A 53, 54 (2017) arXiv:1703.01570 [nucl-th]. - For details of particle physics level calculations, see N. Yamanaka, Analysis of the Electric Dipole Moment in the R-parity Violating Supersymmetric Standard Model, Springer, 2014. ## EDM Physics is reviewed!! ## End